Aarhus University Seal / Aarhus Universitets segl

Manon Grube

Weighting of neural prediction error by rhythmic complexity: A predictive coding account using Mismatch Negativity

Research output: Contribution to journal/Conference contribution in journal/Contribution to newspaperJournal articleResearchpeer-review

DOI

The human brain's ability to extract and encode temporal regularities and to predict the timing of upcoming events is critical for music and speech perception. This work addresses how these mechanisms deal with different levels of temporal complexity, here the number of distinct durations in rhythmic patterns. We use electroencephalography (EEG) to relate the mismatch negativity (MMN), a proxy of neural prediction error, to a measure of information content of rhythmic sequences, the Shannon entropy. Within each of three conditions, participants listened to repeatedly presented standard rhythms of five tones (four inter-onset intervals) and of a given level of entropy: zero (isochronous), medium entropy (two distinct interval durations), or high entropy (four distinct interval durations). Occasionally, the fourth tone was moved forward in time that is it occurred 100 ms (small deviation) or 300 ms early (large deviation). According to the predictive coding framework, high-entropy stimuli are more difficult to model for the brain, resulting in less confident predictions and yielding smaller prediction errors for deviant sounds. Our results support this hypothesis, showing a gradual decrease in MMN amplitude as a function of entropy, but only for small timing deviants. For large timing deviants, in contrast, a modulation of activity in the opposite direction was observed for the earlier N1 component, known to also be sensitive to sudden changes in directed attention. Our results suggest the existence of a fine-grained neural mechanism that weights neural prediction error to the complexity of rhythms and that mostly manifests in the absence of directed attention.

Original languageEnglish
JournalEuropean Journal of Neuroscience
Volume49
Issue12
Pages (from-to)1597-1609
Number of pages13
ISSN0953-816X
DOIs
Publication statusPublished - Jun 2019

    Research areas

  • EEG, MMN, predictive timing, rhythmic complexity, Shannon Entropy, MECHANISM, predictive coding, DISTINCTIVENESS, EVENT-RELATED POTENTIALS, MASS UNIVARIATE ANALYSIS, REPETITION SUPPRESSION, Shannon entropy, SOUND, COMPONENT, SELECTIVE-ATTENTION, VIOLATIONS, INVOLUNTARY ATTENTION

See relations at Aarhus University Citationformats

ID: 140872252