Aarhus University Seal / Aarhus Universitets segl

Lars Poulsen Tolbod

Three-Dimensional Energy Transport in Highly Luminescent Host-Guest Crystals: A Quantitative Experimental and Theoretical Study

Research output: Contribution to journal/Conference contribution in journal/Contribution to newspaperJournal articleResearchpeer-review

  • Lars Poulsen
  • M Jazdzyk, University of Tübingen, Germany
  • J.-E. Communal, Universita degli Studi di Cagliari, Italy
  • J.C. Sancho-Garcia, University of Mons-Hainaut, Belgium
  • A Mura, Universita degli Studi di Cagliari, Italy
  • G Bongiovanni, Universita degli Studi di Cagliari, Italy
  • D Beljonne, University of Mons-Hainaut, Belgium
  • J Cornil, University of Mons-Hainaut, Belgium
  • M Hanack, University of Tübingen, Germany
  • H.-J. Egelhaaf, University of Tübingen, Germany
  • J Gierschner, University of Tübingen, Germany
  • Department of Chemistry
We present a combined experimental and theoretical study on energy transfer processes in a well-defined three-dimensional host-guest system, which allows for high chromophore concentrations while maintaining the highly luminescent properties of the molecules in solution. The self-assembled, nanostructured system with a defined ratio of included donor and acceptor molecules is amenable to quantitative comparison between experiment and theory. Experimentally, energy migration is monitored by steady-state and time-resolved fluorescence spectroscopy. From the theoretical side, the energy transfer process is modeled by a Monte Carlo approach including homo and hetero transfer steps with multi-acceptor distribution. In this dense system, the classical Förster point-dipole approach for energy transfer breaks down, and the hopping rates are therefore calculated on the basis of a quantum-chemical description of the donor and acceptor excited states. Thereby, the true directionality of the excitation diffusion is revealed. Excellent agreement with experimental donor and acceptor decays and overall transfer efficiencies is found. Even at low acceptor concentrations (down to 0.1%), efficient energy transfer over distances as large as 25 nm was observed due to rapid energy migration through a series of homo-transfer steps with preference along one direction of the structure.
Original languageEnglish
JournalJournal of the American Chemical Society
Pages (from-to)8585-8593
Number of pages9
Publication statusPublished - 2007

See relations at Aarhus University Citationformats

ID: 6590188