Lars Poulsen Tolbod

Myocardial Viability Testing by Positron Emission Tomography: Basic Concepts, Mini-Review of the Literature and Experience From a Tertiary PET Center

Research output: Contribution to journal/Conference contribution in journal/Contribution to newspaperReviewResearch

Ischemic heart disease ranges in severity from slightly reduced myocardial perfusion with preserved contractile function to chronic occlusion of coronary arteries with myocardial cells replaced by acontractile scar tissue-ischemic heart failure (iHF). Progression towards scar tissue is thought to involve a period in which the myocardial cells are acontractile but still viable despite severely reduced perfusion. This state of reduced myocardial function that can be reversed by revascularization is termed "hibernation." The concept of hibernating myocardium in iHF has prompted an increasing amount of requests for preoperative patient workup, but while the concept of viability is widely agreed upon, no consensus on clinical testing of hibernation has been established. Therefore, a variety of imaging methods have been used to assess hibernation including morphology based (MRI and ultrasound), perfusion based (MRI, SPECT, or PET) and/or methods to assess myocardial metabolism (PET). Regrettably, the heterogeneous body of literature on the subject has resulted in few robust prospective clinical trials designed to assess the impact of preoperative viability testing prior to revascularization. However, the PARR-2 trial and sub-studies has indicated that >5% hibernating myocardium favors revascularization over optimized medical therapy. In this paper, we review the basic concepts and current evidence for using PET to assess myocardial hibernation and discuss the various methodologies used to process the perfusion/metabolism PET images. Finally, we present our experience in conducting PET viability testing in a tertiary referral center.

Original languageEnglish
JournalSeminars in Nuclear Medicine
Volume50
Issue3
Pages (from-to)248-259
Number of pages12
ISSN0001-2998
DOIs
Publication statusPublished - 2020

See relations at Aarhus University Citationformats

ID: 182124002