Aarhus University Seal / Aarhus Universitets segl

Jørgen Frøkiær

Neuronal precursor cell proliferation in the hippocampus after transient cerebral ischemia: a comparative study of two rat strains using stereological tools

Research output: Contribution to journal/Conference contribution in journal/Contribution to newspaperJournal articleResearchpeer-review

  • Department of Anatomy
  • Biomedical Radio Isotope Techniques
  • The Department of Neurosurgery
  • Positron Emission Tomography Center
  • Stereological Research Laboratory
BACKGROUND: We are currently investigating microglial activation and neuronal precursor cell (NPC) proliferation after transient middle cerebral artery occlusion (tMCAo) in rats. This study aimed: (1) to investigate differences in hippocampal NPC proliferation in outbred male spontaneously hypertensive rats (SHRs) and Sprague-Dawley rats (SDs) one week after tMCAo; (2) to present the practical use of the optical fractionator and 2D nucleator in stereological brain tissue analyses; and (3) to report our experiences with an intraluminal tMCAo model where the occluding filament is advanced 22 mm beyond the carotid bifurcation and the common carotid artery is clamped during tMCAo. METHODS: Twenty-three SDs and twenty SHRs were randomized into four groups subjected to 90 minutes tMCAo or sham. BrdU (50 mg/kg) was administered intraperitoneally twice daily on Day 4 to 7 after surgery. On Day 8 all animals were euthanized. NeuN-stained tissue sections were used for brain and infarct volume estimation with the 2D nucleator and Cavalieri principle. Brains were studied for the presence of activated microglia (ED-1) and hippocampal BrdU incorporation using the optical fractionator. RESULTS: We found no significant difference or increase in post-ischemic NPC proliferation between the two strains. However, the response to remote ischemia may differ between SDs and SHRs. In three animals increased post-stroke NPC proliferation was associated with hippocampal ischemic injury. The mean infarct volume was 89.2 +/- 76.1 mm3 in SHRs and 16.9 +/- 22.7 mm3 in SDs (p < 0.005). Eight out of eleven SHRs had ischemic neocortical damage in contrast to only one out of 12 SDs. We observed involvement of the anterior choroidal and hypothalamic arteries in several animals from both strains and the anterior cerebral artery in two SHRs. CONCLUSIONS: We found no evidence of an early hippocampal NPC proliferation one week after tMCAo in both strains. Infarction within the anterior choroidal artery could induce hippocampal ischemia and increase NPC proliferation profoundly. NPC proliferation was not aggravated by the presence of activated microglia. Intraluminal tMCAo in SHRs gave a more reliable infarct with neocortical involvement, but affected territories supplied by the anterior cerebral, anterior choroidal and hypothalamic arteries.
Original languageEnglish
JournalExperimental & translational stroke medicine
Pages (from-to)8
Publication statusPublished - 2010

See relations at Aarhus University Citationformats

ID: 21668268