Assistant professor, tenure track, Tenure Track assistant professor
PROFESSIONAL EXPERIENCE
Tenure-Track Assistant Professor at the Center for Quantitative Genetics and Genomics, Aarhus University (Aarhus, Denmark)
|
Feb. 2021 – Present |
USAID-funded project between Cornell University and CHIBAS (Port-au-Prince, Haiti)
|
Oct. 2017 – |
Breeding project at USDA-ARS (Madison, Wisconsin, USA)
|
Apr. 2016 – May 2017 |
Fixed-term contract at Arvalis (Paris, France)
|
Nov. 2011 – |
EDUCATION
Postdoctoral Research, Cornell University Department: Institute of Biotechnology Supervisor: Dr. Edward S. Buckler Topics:Computational biology and quantitative genomics to understand genetic effects in maize and sorghum
|
Oct. 2017 – |
PhD, University of Wisconsin – Madison Major: Plant Breeding and Genetics (Quantitative Genetics, Breeding Methods, Plant Molecular Biology) Minor: Statistics (Probability and Mathematics, Experimental Designs, Applied Methods) Department: Agronomy (Plant Breeding and Plant Genetics Program) Supervisor: Dr. Michael D. Casler Thesis:Inference of candidate causal variants and assessment of genomic prediction for bioenergy traits in switchgrass (Panicum virgatum L.)
|
June 2012 – |
Licence and Master’s degree, Montpellier SupAgro – International University Centre for Advanced Studies in Agricultural Sciences and Rural Development Major: Agronomy (Ecophysiology, Plant and Animal Breeding, Molecular Biology, Statistics, Agricultural Engineering, Social and Economic Sciences)
|
Sept. 2007 –
|
1. Ramstein,G. P., & Buckler, E. S. (2022). Prediction of evolutionary constraintby genomic annotations improves functional prioritization of genomic variantsin maize. Genome Biology, 23(1), 1–26. https://doi.org/10.1186/s13059-022-02747-2
2. Khaipho-Burch,M., Ferebee, T., Giri, A., Ramstein, G. P., Monier, B., Yi, E., CintaRomay, M., & Buckler, E. S. (2022). Elucidating the patterns of pleiotropyand its biological relevance in maize. In bioRxiv (p.2022.07.20.500810). https://doi.org/10.1101/2022.07.20.500810
3. Lin,M., Qiao, P., Matschi, S., Vasquez, M., Ramstein, G. P., Bourgault, R.,Mohammadi, M., Scanlon, M. J., Molina, I., Smith, L. G., & Gore, M. A.(2022). Integrating GWAS and TWAS to elucidate the genetic architecture ofmaize leaf cuticular conductance. Plant Physiology. https://doi.org/10.1093/plphys/kiac198
4. Giri,A., Khaipho-Burch, M., Buckler, E. S., & Ramstein, G. P. (2021).Haplotype associated RNA expression (HARE) improves prediction of complextraits in maize. PLoS Genetics, 17(10), e1009568. https://doi.org/10.1371/journal.pgen.1009568
5. Washburn,J. D., Cimen, E., Ramstein, G. P., Reeves, T., O’Briant, P., McLean, G.,Cooper, M., Hammer, G., & Buckler, E. S. (2021). Predicting phenotypes fromgenetic, environment, management, and historical data using CNNs. Theoreticaland Applied Genetics. https://doi.org/10.1007/s00122-021-03943-7
6. Wu,D., Tanaka, R., Li, X., Ramstein, G. P., Cu, S., Hamilton, J. P., Buell,C. R., Stangoulis, J., Rocheford, T., & Gore, M. A. (2021). High-resolutiongenome-wide association study pinpoints metal transporter and chelator genesinvolved in the genetic control of element levels in maize grain. G3, 11(4).https://doi.org/10.1093/g3journal/jkab059
7. Ramstein,G. P., Larsson, S. J., Cook, J. P., Edwards, J. W., Ersoz, E. S.,Flint-Garcia, S., Gardner, C. A., Holland, J. B., Lorenz, A. J., McMullen, M.D., Millard, M. J., Rocheford, T. R., Tuinstra, M. R., Bradbury, P. J.,Buckler, E. S., & Romay, M. C. (2020). Dominance Effects and FunctionalEnrichments Improve Prediction of Agronomic Traits in Hybrid Maize. Genetics,215(1), 215–230. https://doi.org/10.1534/genetics.120.303025
8. Jensen, S., Charles, J. R., Muleta, K.,Bradbury, P., Casstevens, T., Deshpande, S. P., Gore, M. A., Gupta, R., Ilut,D. C., Johnson, L., Lozano, R., Miller, Z., Ramu, P., Rathore, A., Cinta Romay,M., Upadhyaya, H. D., Varshney, R., Morris, G. P., Pressoir, G., Buckler, E.S., Ramstein, G. P. (2020). A sorghum practical haplotype graphfacilitates genome‐wideimputation and cost‐effectivegenomic prediction. The Plant Genome, 13(1), 1687. https://doi.org/10.1002/tpg2.20009
9. Washburn, J. D., Mejia-Guerra, M. K., Ramstein,G. P., Kremling, K. A., Valluru, R., Buckler, E. S., & Wang, H. (2019).Evolutionarily informed deep learning methods for predicting relativetranscript abundance from DNA sequence. Proceedings of the National Academyof Sciences of the United States of America, 116(12), 5542–5549. https://doi.org/10.1073/pnas.1814551116
10. Ramstein, G. P., & Casler, M.D. (2019). Extensions of BLUP Models for Genomic Prediction in HeterogeneousPopulations: Application in a Diverse Switchgrass Sample. G3, 9(3),789–805. https://doi.org/10.1534/g3.118.200969
11. Ramstein, G. P., Jensen, S. E.,& Buckler, E. S. (2019). Breaking the curse of dimensionality to identifycausal variants in Breeding 4. Theoretical and Applied Genetics, 132(3),559–567. https://doi.org/10.1007/s00122-018-3267-3
12. Ramstein,G. P., Evans, J., Nandety, A., Saha, M. C., Brummer, E. C., Kaeppler, S.M., Buell, C. R., & Casler, M. D. (2018). Candidate Variants for Additiveand Interactive Effects on Bioenergy Traits in Switchgrass (Panicum virgatumL.) Identified by Genome-Wide Association Analyses. The Plant Genome, 11(3).https://doi.org/10.3835/plantgenome2018.01.0002
13. Taylor, M., Tornqvist, C.-E., Zhao, X.,Grabowski, P., Doerge, R., Ma, J., Volenec, J., Evans, J., Ramstein, G. P.,Sanciangco, M. D., Buell, C. R., Casler, M. D., & Jiang, Y. (2018).Genome-Wide Association Study in Pseudo-F2 Populations of SwitchgrassIdentifies Genetic Loci Affecting Heading and Anthesis Dates. Frontiers inPlant Science, 9, 1250. https://doi.org/10.3389/fpls.2018.01250
14. Jabbour, F., Gaudeul, M., Lambourdière,J., Ramstein, G. P., Hassanin, A., Labat, J.-N., & Sarthou, C.(2018). Phylogeny, biogeography and character evolution in the tribe Desmodieae(Fabaceae: Papilionoideae), with special emphasis on the New Caledonian endemicgenera. Molecular Phylogenetics and Evolution, 118, 108–121. https://doi.org/10.1016/j.ympev.2017.09.017
15. Casler,M. D., & Ramstein, G. P. (2018). Breeding for biomass yield inswitchgrass using surrogate measures of yield. Bioenergy Research, 11,1–12. https://doi.org/10.1007/s12155-017-9867-y
16. Grabowski, P. P., Evans, J., Daum, C.,Deshpande, S., Barry, K. W., Kennedy, M., Ramstein, G. P., Kaeppler, S.M., Buell, C. R., Jiang, Y., & Casler, M. D. (2017). Genome-wideassociations with flowering time in switchgrass using exome-capture sequencingdata. The New Phytologist, 213(1), 154–169. https://doi.org/10.1111/nph.14101
17. Ramstein, G. P., Evans, J.,Kaeppler, S. M., Mitchell, R. B., Vogel, K. P., Buell, C. R., & Casler, M.D. (2016). Accuracy of Genomic Prediction in Switchgrass (Panicum virgatum L.)Improved by Accounting for Linkage Disequilibrium. G3, 6(4),1049–1062. https://doi.org/10.1534/g3.115.024950
18. Ramstein, G. P., Lipka, A. E., Lu,F., Costich, D. E., Cherney, J. H., Buckler, E. S., & Casler, M. D. (2015).Genome-wide association study based on multiple imputation with low-depthsequencing data: application to biofuel traits in reed canarygrass. G3, 5(5),891–909. https://doi.org/10.1534/g3.115.017533
Sept. 2022 | Beyond QTL effects in quantitative genetics: comparative genomics and machine learning techniques for prediction across populations. Eucarpia Biometrics 2022 |
---|---|
Aug. 2022 | Detecting genomic effects at high resolution: functional prioritization of genomic variants by evolutionary constraint. Evolution and Population genetICs in DenmarK |
June 2022 | Current limitations in quantitative genetics, and potential solutions for robust genomic prediction and biological inference. Eucarpia Maize and Sorghum 2022 |
June 2021 | Identifying causal variants by evolutionary constraint: Prediction at single-site resolution and application in maize. Limagrain Seminar on Molecular Characterization of Genetic Variability |
Mar. 2021 | Prediction of evolutionary constraint by genomic annotations improves prioritization of causal variants in maize. 63rd Maize Genetics Conference |
Jan. 2020 | Prioritization of genetic variants by biological and evolutionary annotation: functional assessments in diverse maize populations. Plant and Animal Genome XXVIII Conference |
Sept. 2019 | An overview of machine learning principles and their applications in biology. Boyce Thompson Institute Symposium |
Aug. 2019 | Breaking the curse of dimensionality to identify causal variants in Breeding 4. GOBii/Excellence in Breeding Webinar |
May 2016 | Genomic selection in switchgrass: proofs of concept and applications. 2016 GLBRC Annual Science Meeting |
Jan. 2016 | Accuracy of genomic prediction in switchgrass improved by accounting for linkage disequilibrium. Plant and Animal Genome XXIV Conference |
May 2015 | Genomic selection for biofuel traits in switchgrass: evaluation of procedures. 2015 GLBRC Annual Science Meeting |
Jan. 2015 | Genome-wide association study based on multiple imputation with low-depth sequencing data: application to biofuel traits in reed canarygrass. Plant and Animal Genome XXIII Conference |
May 2014 | Genome-wide association studies in bioenergy grasses for biofuel quality traits. 2014 GLBRC Annual Science Meeting |
Mar. 2022 | Prediction of evolutionary constraint by genomic annotations improves prioritization of causal variants in maize. Probabilistic Modelling in Genomics 2022 |
---|---|
Nov. 2020 | Prediction of evolutionary constraint by genomic annotations: Functional enrichment in maize. 6th International Conference on Quantitative Genetics |
Mar. 2019 | Functional basis for hybrid vigor in maize: directional and polygenic effects on yield, height and flowering time. 61st Maize Genetics Conference |
Feb. 2019 | Dominance gene action and gene proximity capture the genetic basis of heterosis in diverse maize panels. 2019 Gordon Research Conference in Quantitative Genetics and Genomics |
May 2018 | Expression levels and gene annotation for transcriptomic prediction in maize. The Biology of Genomes 2018 |
Mar. 2018 | Incorporation of functional information into genomic prediction models in maize. 60th Maize Genetics Conference |
Mar. 2017 | Deterministic optimization algorithms and alternate BLUP models for genomic prediction in heterogeneous populations: application in switchgrass (Panicum virgatum L.). 2017 Gordon Research Conference in Quantitative Genetics and Genomics |
June 2016 | The use of marker-data transformations to account for linkage disequilibrium in genomic selection: a case study in switchgrass (Panicum virgatum L.). 5th International Conference on Quantitative Genetics |
May 2016 | Genomic selection and genome-wide association analyses for biofuel traits in switchgrass. 2016 GLBRC Annual Science Meeting |
June 2014 | Causal variants for biofuel traits of reed canarygrass based on multiple imputation and GWAS analysis of low-quality GBS data. Pan-American Congress on Plants and BioEnergy |
2016 | Henry Steenbock Academic Merit Award - College of Agricultural and Life Sciences at the University of Wisconsin-Madison |
---|---|
2016 | Award for Participation in the 5th International Conference on Quantitative Genetics USDA, National Institute of Food and Agriculture |
2015 | Royce Bringhurst Memorial Scholarship - College of Agricultural and Life Sciences at the University of Wisconsin-Madison |
2015 | O. N. Allen Scholarship - Department of Agronomy at the University of Wisconsin-Madison |
2014-2016 | Gabelman-Shippo Distinguished Graduate Fellowship - Plant Breeding and Plant Genetics Program at the University of Wisconsin-Madison |
Oct. 2022 – Sept. 2025
Industrial Postdoc Grant 2022 (Innovation Fund Denmark)
Funding: DKK 2,470,000
Title: Improvement of winter barley by efficient genomics-based hybrid breeding
Role: Academic Mentor
Jan. 2022 – Dec. 2024
AUFF Starting Grant 2021 – Assistant Professor (Aarhus University Research Foundation)
Funding: DKK 1,500,000
Role: Principal Investigator
July 2021 – June 2025
Emerging Investigator 2021 – Research within Plant Science, Agriculture and Food Biotechnology (Novo Nordisk Foundation)
Funding: DKK 7,993,851
Title: Selection of mutations by in silico and experimental variant effects (SIEVE): a new strategy to improve fitness in cool-season grasses
Role: Principal Investigator
- Trendsin Plant Sciences (Spring 2022)
- Nature Communications (Summer 2021)
- GENETICS (Summer 2021)
- Genome Biology (Spring 2021)
- New Phytologist (Winter 2020-2021)
- Cell (Summer 2020)
- The Plant Genome (Summer 2020)
- G3 (Spring 2020)
- PLoS One (Spring 2019, Summer 2019)
- Theoretical and Applied Genetics (Spring 2018)
- Heredity (Spring 2018)
- Molecular Breeding (Spring 2016)
- Crop Science (Fall 2015, Fall 2017, Fall 2018, Summer 2020)