Aarhus University Seal / Aarhus Universitets segl

Claus Oxvig

α3Na+/K+-ATPase deficiency causes brain ventricle dilation and abrupt embryonic motility in zebrafish

Research output: Contribution to journal/Conference contribution in journal/Contribution to newspaperJournal articleResearchpeer-review

Standard

α3Na+/K+-ATPase deficiency causes brain ventricle dilation and abrupt embryonic motility in zebrafish. / Doganli, Canan; Beck, Hans Christian; Ribera, Angeles B; Oxvig, Claus; Lykke-Hartmann, Karin.

In: Journal of Biological Chemistry, Vol. 288, 29.03.2013, p. 8862-8874.

Research output: Contribution to journal/Conference contribution in journal/Contribution to newspaperJournal articleResearchpeer-review

Harvard

APA

CBE

MLA

Vancouver

Author

Doganli, Canan ; Beck, Hans Christian ; Ribera, Angeles B ; Oxvig, Claus ; Lykke-Hartmann, Karin. / α3Na+/K+-ATPase deficiency causes brain ventricle dilation and abrupt embryonic motility in zebrafish. In: Journal of Biological Chemistry. 2013 ; Vol. 288. pp. 8862-8874.

Bibtex

@article{d7e95d771d3440bca999f5390df023c8,
title = "α3Na+/K+-ATPase deficiency causes brain ventricle dilation and abrupt embryonic motility in zebrafish",
abstract = "Na+/K+-ATPases are transmembrane ion pumps that maintain ion gradients across the basolateral plasma membrane in all animal cells to facilitate essential biological functions. Mutations in the Na+/K+-ATPase α3 subunit gene (ATP1A3) cause rapid-onset dystonia-parkinsonism, a rare movement disorder characterized by sudden onset of dystonic spasms and slow movements. In the brain, ATP1A3 is principally expressed in neurons. In zebrafish, the transcripts of the two ATP1A3 orthologs, Atp1a3a and Atp1a3b, show distinct expression in the brain. Surprisingly, targeted knockdown of either Atp1a3a or Atp1a3b leads to brain ventricle dilation, a likely consequence of ion imbalances across the plasma membrane that cause accumulation of cerebrospinal fluid in the ventricle. The brain ventricle dilation is accompanied by a depolarization of spinal Rohon-Beard neurons in Atp1a3a knockdown embryos, suggesting impaired neuronal excitability. This is further supported by Atp1a3a or Atp1a3b knockdown results where altered responses to tactile stimuli as well as abnormal motility were observed. Finally, proteomic analysis identified several protein candidates highlighting proteome changes associated with the knockdown of Atp1a3a or Atp1a3b. Our data thus strongly support the role of α3Na+/K+-ATPase in zebrafish motility and brain development, associating for the first time the α3Na+/K+-ATPase deficiency with brain ventricle dilation.",
author = "Canan Doganli and Beck, {Hans Christian} and Ribera, {Angeles B} and Claus Oxvig and Karin Lykke-Hartmann",
year = "2013",
month = "3",
day = "29",
doi = "10.1074/jbc.M112.421529",
language = "English",
volume = "288",
pages = "8862--8874",
journal = "Journal of Biological Chemistry",
issn = "0021-9258",
publisher = "American Society for Biochemistry and Molecular Biology, Inc.",

}

RIS

TY - JOUR

T1 - α3Na+/K+-ATPase deficiency causes brain ventricle dilation and abrupt embryonic motility in zebrafish

AU - Doganli, Canan

AU - Beck, Hans Christian

AU - Ribera, Angeles B

AU - Oxvig, Claus

AU - Lykke-Hartmann, Karin

PY - 2013/3/29

Y1 - 2013/3/29

N2 - Na+/K+-ATPases are transmembrane ion pumps that maintain ion gradients across the basolateral plasma membrane in all animal cells to facilitate essential biological functions. Mutations in the Na+/K+-ATPase α3 subunit gene (ATP1A3) cause rapid-onset dystonia-parkinsonism, a rare movement disorder characterized by sudden onset of dystonic spasms and slow movements. In the brain, ATP1A3 is principally expressed in neurons. In zebrafish, the transcripts of the two ATP1A3 orthologs, Atp1a3a and Atp1a3b, show distinct expression in the brain. Surprisingly, targeted knockdown of either Atp1a3a or Atp1a3b leads to brain ventricle dilation, a likely consequence of ion imbalances across the plasma membrane that cause accumulation of cerebrospinal fluid in the ventricle. The brain ventricle dilation is accompanied by a depolarization of spinal Rohon-Beard neurons in Atp1a3a knockdown embryos, suggesting impaired neuronal excitability. This is further supported by Atp1a3a or Atp1a3b knockdown results where altered responses to tactile stimuli as well as abnormal motility were observed. Finally, proteomic analysis identified several protein candidates highlighting proteome changes associated with the knockdown of Atp1a3a or Atp1a3b. Our data thus strongly support the role of α3Na+/K+-ATPase in zebrafish motility and brain development, associating for the first time the α3Na+/K+-ATPase deficiency with brain ventricle dilation.

AB - Na+/K+-ATPases are transmembrane ion pumps that maintain ion gradients across the basolateral plasma membrane in all animal cells to facilitate essential biological functions. Mutations in the Na+/K+-ATPase α3 subunit gene (ATP1A3) cause rapid-onset dystonia-parkinsonism, a rare movement disorder characterized by sudden onset of dystonic spasms and slow movements. In the brain, ATP1A3 is principally expressed in neurons. In zebrafish, the transcripts of the two ATP1A3 orthologs, Atp1a3a and Atp1a3b, show distinct expression in the brain. Surprisingly, targeted knockdown of either Atp1a3a or Atp1a3b leads to brain ventricle dilation, a likely consequence of ion imbalances across the plasma membrane that cause accumulation of cerebrospinal fluid in the ventricle. The brain ventricle dilation is accompanied by a depolarization of spinal Rohon-Beard neurons in Atp1a3a knockdown embryos, suggesting impaired neuronal excitability. This is further supported by Atp1a3a or Atp1a3b knockdown results where altered responses to tactile stimuli as well as abnormal motility were observed. Finally, proteomic analysis identified several protein candidates highlighting proteome changes associated with the knockdown of Atp1a3a or Atp1a3b. Our data thus strongly support the role of α3Na+/K+-ATPase in zebrafish motility and brain development, associating for the first time the α3Na+/K+-ATPase deficiency with brain ventricle dilation.

U2 - 10.1074/jbc.M112.421529

DO - 10.1074/jbc.M112.421529

M3 - Journal article

VL - 288

SP - 8862

EP - 8874

JO - Journal of Biological Chemistry

JF - Journal of Biological Chemistry

SN - 0021-9258

ER -