Christina C. Dahm

Persistent S-nitrosation of complex I and other mitochondrial membrane proteins by S-nitrosothiols but not nitric oxide or peroxynitrite: implications for the interaction of nitric oxide with mitochondria

Research output: Contribution to journal/Conference contribution in journal/Contribution to newspaperJournal articleResearchpeer-review

S-nitrosation of mitochondrial proteins has been proposed to contribute to the pathophysiological interactions of nitric oxide (NO) and its derivatives with mitochondria but has not been shown directly. Furthermore, little is known about the mechanism of formation or the fate of these putative S-nitrosothiols. Here we have determined whether mitochondrial membrane protein thiols can be S-nitrosated on exposure to free NO from 3,3-bis(aminoethyl)-1-hydroxy-2-oxo-1-triazene (DETA-NONOate) by interaction with S-nitrosoglutathione or S-nitroso-N-acetylpenicillamine (SNAP) and by the NO derivative peroxynitrite. S-Nitrosation of protein thiols was measured directly by chemiluminescence detection. S-Nitrosoglutathione and S-nitroso-N-acetylpenicillamine led to extensive protein thiol oxidation, with about 30% of the modified protein thiols persistently S-nitrosated. In contrast, there was no protein thiol oxidation or S-nitrosation on exposure to 3,3-bis (aminoethyl)-1-hydroxy-2-oxo-1-triazene. Peroxynitrite extensively oxidized protein thiols but produced negligible amounts of S-nitrosothiols. Therefore, mitochondrial membrane protein thiols are S-nitrosated by preformed S-nitrosothiols but not by NO or by peroxynitrite. These S-nitrosated protein thiols were readily reduced by glutathione, so S-nitrosation will only persist when the mitochondrial glutathione pool is oxidized. Respiratory chain complex I was S-nitrosated by S-nitrosothiols, consistent with it being an important target for S-nitrosation during nitrosative stress. The S-nitrosation of complex I correlated with a significant loss of activity that was reversed by thiol reductants. S-Nitrosation was also associated with increased superoxide production from complex I. These findings point to a significant role for complex I S-nitrosation and consequent dysfunction during nitrosative stress in disorders such as Parkinson disease and sepsis.
Original languageEnglish
JournalJournal of Biological Chemistry
Volume281
Issue15
Pages (from-to)10056-65
Number of pages9
ISSN0021-9258
DOIs
Publication statusPublished - 2006
Externally publishedYes

See relations at Aarhus University Citationformats

ID: 20901971