Aarhus University Seal

Anders Dahl Kramer

Right ventricular adaptation in the critical phase after acute intermediate-risk pulmonary embolism

Research output: Contribution to journal/Conference contribution in journal/Contribution to newspaperJournal articleResearchpeer-review


BACKGROUND: The haemodynamic response following acute, intermediate-risk pulmonary embolism is not well described. We aimed to describe the cardiovascular changes in the initial, critical phase 0-12 hours after acute pulmonary embolism in an in-vivo porcine model.

METHODS: Pigs were randomly allocated to pulmonary embolism (n = 6) or sham (n = 6). Pulmonary embolism was administered as autologous blood clots (20 × 1 cm) until doubling of mean pulmonary arterial pressure or mean pulmonary arterial pressure was greater than 34 mmHg. Sham animals received saline. Cardiopulmonary changes were evaluated for 12 hours after intervention by biventricular pressure-volume loop recordings, invasive pressure measurements, arterial and central venous blood gas analyses.

RESULTS: Mean pulmonary arterial pressure increased (P < 0.0001) and stayed elevated for 12 hours in the pulmonary embolism group compared to sham. Pulmonary vascular resistance and right ventricular arterial elastance (right ventricular afterload) were increased in the first 11 and 6 hours, respectively, after pulmonary embolism (P < 0.01 for both) compared to sham. Right ventricular ejection fraction was reduced (P < 0.01) for 8 hours, whereas a near-significant reduction in right ventricular stroke volume was observed (P = 0.06) for 4 hours in the pulmonary embolism group compared to sham. Right ventricular ventriculo-arterial coupling was reduced (P < 0.05) for 6 hours following acute pulmonary embolism despite increased right ventricular mechanical work in the pulmonary embolism group (P < 0.01) suggesting right ventricular failure.

CONCLUSIONS: In a porcine model of intermediate-risk pulmonary embolism, the increased right ventricular afterload caused initial right ventricular ventriculo-arterial uncoupling and dysfunction. After approximately 6 hours, the right ventricular afterload returned to pre-pulmonary embolism values and right ventricular function improved despite a sustained high pulmonary arterial pressure. These results suggest an initial critical and vulnerable phase of acute pulmonary embolism before haemodynamic adaptation.

Original languageEnglish
JournalEuropean Heart Journal: Acute Cardiovascular Care
Pages (from-to)243–249
Number of pages9
Publication statusPublished - Mar 2021

    Research areas

  • PORCINE MODEL, DYSFUNCTION, Pulmonary hypertension, Pulmonary embolism (PE), Right ventricular afterload, animal model, gas exchange, pulmonary circulation, right ventricular function

See relations at Aarhus University Citationformats

Press/Media items

ID: 187919029