Aage Kristian Olsen Alstrup

Monitoring variables affecting positron emission tomography measurements of cerebral blood flow in anaesthetized pigs

Research output: Contribution to journal/Conference contribution in journal/Contribution to newspaperJournal articleResearchpeer-review

Standard

Monitoring variables affecting positron emission tomography measurements of cerebral blood flow in anaesthetized pigs. / Alstrup, Aage Kristian Olsen; Zois, Nora Elisabeth; Simonsen, Mette; Munk, Ole Lajord.

In: Acta Veterinaria Scandinavica, Vol. 60, No. 1, 12.03.2018, p. 17.

Research output: Contribution to journal/Conference contribution in journal/Contribution to newspaperJournal articleResearchpeer-review

Harvard

APA

CBE

MLA

Vancouver

Author

Bibtex

@article{8ac419647cc144b1bc8ef0edb68726f9,
title = "Monitoring variables affecting positron emission tomography measurements of cerebral blood flow in anaesthetized pigs",
abstract = "BACKGROUND: Positron emission tomography (PET) imaging of anaesthetized pig brains is a useful tool in neuroscience. Stable cerebral blood flow (CBF) is essential for PET, since variations can affect the distribution of several radiotracers. However, the effect of physiological factors regulating CBF is unresolved and therefore knowledge of optimal anaesthesia and monitoring of pigs in PET studies is sparse. The aim of this study was therefore to determine if and how physiological variables and the duration of anaesthesia affected CBF as measured by PET using [15O]-water in isoflurane-N2O anaesthetized domestic female pigs. First, we examined how physiological monitoring parameters were associated with CBF, and which parameters should be monitored and if possible kept constant, during studies where a stable CBF is important. Secondly, we examined how the duration of anaesthesia affected CBF and the monitoring parameters.RESULTS: No significant statistical correlations were found between CBF and the nine monitoring variables. However, we found that arterial carbon dioxide tension (PaCO2) and body temperature were important predictors of CBF that should be observed and kept constant. In addition, we found that long-duration anaesthesia was significantly correlated with high heart rate, low arterial oxygen tension, and high body temperature, but not with CBF.CONCLUSIONS: The findings indicate that PaCO2 and body temperature are crucial for maintaining stable levels of CBF and thus optimizing PET imaging of molecular mechanisms in the brain of anaesthetized pigs. Therefore, as a minimum these two variables should be monitored and kept constant. Furthermore, the duration of anaesthesia should be kept constant to avoid variations in monitoring variables.",
keywords = "Anesthesia, Animals, Body Temperature, Carbon Dioxide, Cerebrovascular Circulation, Female, Positron-Emission Tomography/standards, Sus scrofa, Swine, Time Factors",
author = "Alstrup, {Aage Kristian Olsen} and Zois, {Nora Elisabeth} and Mette Simonsen and Munk, {Ole Lajord}",
year = "2018",
month = "3",
day = "12",
doi = "10.1186/s13028-018-0369-5",
language = "English",
volume = "60",
pages = "17",
journal = "Acta Veterinaria Scandinavica (Online)",
issn = "0044-605X",
publisher = "BioMed Central Ltd.",
number = "1",

}

RIS

TY - JOUR

T1 - Monitoring variables affecting positron emission tomography measurements of cerebral blood flow in anaesthetized pigs

AU - Alstrup, Aage Kristian Olsen

AU - Zois, Nora Elisabeth

AU - Simonsen, Mette

AU - Munk, Ole Lajord

PY - 2018/3/12

Y1 - 2018/3/12

N2 - BACKGROUND: Positron emission tomography (PET) imaging of anaesthetized pig brains is a useful tool in neuroscience. Stable cerebral blood flow (CBF) is essential for PET, since variations can affect the distribution of several radiotracers. However, the effect of physiological factors regulating CBF is unresolved and therefore knowledge of optimal anaesthesia and monitoring of pigs in PET studies is sparse. The aim of this study was therefore to determine if and how physiological variables and the duration of anaesthesia affected CBF as measured by PET using [15O]-water in isoflurane-N2O anaesthetized domestic female pigs. First, we examined how physiological monitoring parameters were associated with CBF, and which parameters should be monitored and if possible kept constant, during studies where a stable CBF is important. Secondly, we examined how the duration of anaesthesia affected CBF and the monitoring parameters.RESULTS: No significant statistical correlations were found between CBF and the nine monitoring variables. However, we found that arterial carbon dioxide tension (PaCO2) and body temperature were important predictors of CBF that should be observed and kept constant. In addition, we found that long-duration anaesthesia was significantly correlated with high heart rate, low arterial oxygen tension, and high body temperature, but not with CBF.CONCLUSIONS: The findings indicate that PaCO2 and body temperature are crucial for maintaining stable levels of CBF and thus optimizing PET imaging of molecular mechanisms in the brain of anaesthetized pigs. Therefore, as a minimum these two variables should be monitored and kept constant. Furthermore, the duration of anaesthesia should be kept constant to avoid variations in monitoring variables.

AB - BACKGROUND: Positron emission tomography (PET) imaging of anaesthetized pig brains is a useful tool in neuroscience. Stable cerebral blood flow (CBF) is essential for PET, since variations can affect the distribution of several radiotracers. However, the effect of physiological factors regulating CBF is unresolved and therefore knowledge of optimal anaesthesia and monitoring of pigs in PET studies is sparse. The aim of this study was therefore to determine if and how physiological variables and the duration of anaesthesia affected CBF as measured by PET using [15O]-water in isoflurane-N2O anaesthetized domestic female pigs. First, we examined how physiological monitoring parameters were associated with CBF, and which parameters should be monitored and if possible kept constant, during studies where a stable CBF is important. Secondly, we examined how the duration of anaesthesia affected CBF and the monitoring parameters.RESULTS: No significant statistical correlations were found between CBF and the nine monitoring variables. However, we found that arterial carbon dioxide tension (PaCO2) and body temperature were important predictors of CBF that should be observed and kept constant. In addition, we found that long-duration anaesthesia was significantly correlated with high heart rate, low arterial oxygen tension, and high body temperature, but not with CBF.CONCLUSIONS: The findings indicate that PaCO2 and body temperature are crucial for maintaining stable levels of CBF and thus optimizing PET imaging of molecular mechanisms in the brain of anaesthetized pigs. Therefore, as a minimum these two variables should be monitored and kept constant. Furthermore, the duration of anaesthesia should be kept constant to avoid variations in monitoring variables.

KW - Anesthesia

KW - Animals

KW - Body Temperature

KW - Carbon Dioxide

KW - Cerebrovascular Circulation

KW - Female

KW - Positron-Emission Tomography/standards

KW - Sus scrofa

KW - Swine

KW - Time Factors

U2 - 10.1186/s13028-018-0369-5

DO - 10.1186/s13028-018-0369-5

M3 - Journal article

VL - 60

SP - 17

JO - Acta Veterinaria Scandinavica (Online)

JF - Acta Veterinaria Scandinavica (Online)

SN - 0044-605X

IS - 1

ER -