Aarhus Universitets segl

Zero-infinity laws in Diophantine approximation

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

  • Y. Bugeaud, Université Louis Pasteur, Frankrig
  • M.M. Dodson, University of York, Danmark
  • S. Kristensen
  • Institut for Matematiske Fag
It is shown that for any translation invariant outer measure M, the M-measure of the intersection of any subset of R^n that is invariant under rational translations and which does not have full Lebesgue measure with an the closure of an open set of positive measure cannot be positive and finite. Analogues for $p$-adic fields and fields of formal power series over a finite field are established. The results are applied to some problems in metric Diophantine approximation.
OriginalsprogEngelsk
TidsskriftQuarterly Journal of Mathematics
Vol/bind56
Nummer3
Sider (fra-til)311-320
Antal sider10
ISSN0033-5606
StatusUdgivet - 2005

Se relationer på Aarhus Universitet Citationsformater

ID: 593055