Zero-infinity laws in Diophantine approximation

Y. Bugeaud, M.M. Dodson, S. Kristensen

    Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

    Abstract

    It is shown that for any translation invariant outer measure M, the M-measure of the intersection of any subset of R^n that is invariant under rational translations and which does not have full Lebesgue measure with an the closure of an open set of positive measure cannot be positive and finite. Analogues for $p$-adic fields and fields of formal power series over a finite field are established. The results are applied to some problems in metric Diophantine approximation.
    OriginalsprogEngelsk
    TidsskriftQuarterly Journal of Mathematics
    Vol/bind56
    Nummer3
    Sider (fra-til)311-320
    Antal sider10
    ISSN0033-5606
    StatusUdgivet - 2005

    Fingeraftryk

    Dyk ned i forskningsemnerne om 'Zero-infinity laws in Diophantine approximation'. Sammen danner de et unikt fingeraftryk.

    Citationsformater