Workload-Aware Materialization of Junction Trees

Martino Ciaperoni, Cigdem Aslay, Aristides Gionis, Michael Mathioudakis

Publikation: Bidrag til bog/antologi/rapport/proceedingKonferencebidrag i proceedingsForskningpeer review

Abstract

Bayesian networks are popular probabilistic models that capture the conditional dependencies among a set of variables. Inference in Bayesian networks is a fundamental task for answering probabilistic queries over a subset of variables in the data. However, exact inference in Bayesian networks is NP-hard, which has prompted the development of many practical inference methods. In this paper, we focus on improving the performance of the junction-tree algorithm, a well-known method for exact inference in Bayesian networks. In particular, we seek to leverage information in the workload of probabilistic queries to obtain an optimal workload-aware materialization of junction trees, with the aim to accelerate the processing of inference queries. We devise an optimal pseudo-polynomial algorithm to tackle this problem and discuss approximation schemes. Compared to state-of-the-art approaches for efficient processing of inference queries via junction trees, our methods are the first to exploit the information provided in query workloads. Our experimentation on several real-world Bayesian networks confirms the effectiveness of our techniques in speeding-up query processing.

OriginalsprogEngelsk
TitelProceedings of the 25th International Conference on Extending Database Technology
Antal sider13
UdgivelsesstedKonstanz
ForlagUniversität Konstanz
Publikationsdato2022
Sider65-77
ISBN (Elektronisk)9783893180868
DOI
StatusUdgivet - 2022
Begivenhed25th International Conference on Extending Database Technology - Edinburgh, Storbritannien
Varighed: 29 mar. 20221 apr. 2022
Konferencens nummer: 25

Konference

Konference25th International Conference on Extending Database Technology
Nummer25
Land/OmrådeStorbritannien
ByEdinburgh
Periode29/03/202201/04/2022

Fingeraftryk

Dyk ned i forskningsemnerne om 'Workload-Aware Materialization of Junction Trees'. Sammen danner de et unikt fingeraftryk.

Citationsformater