Wild Bootstrap and Asymptotic Inference With Multiway Clustering

James G. MacKinnon*, Morten Ørregaard Nielsen, Matthew D. Webb

*Corresponding author af dette arbejde

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

28 Citationer (Scopus)
55 Downloads (Pure)

Abstract

We study two cluster-robust variance estimators (CRVEs) for regression models with clustering in two dimensions and give conditions under which t-statistics based on each of them yield asymptotically valid inferences. In particular, one of the CRVEs requires stronger assumptions about the nature of the intra-cluster correlations. We then propose several wild bootstrap procedures and state conditions under which they are asymptotically valid for each type of t-statistic. Extensive simulations suggest that using certain bootstrap procedures with one of the t-statistics generally performs very well. An empirical example confirms that bootstrap inferences can differ substantially from conventional ones.

OriginalsprogEngelsk
TidsskriftJournal of Business and Economic Statistics
Vol/bind39
Nummer2
Sider (fra-til)505-519
Antal sider15
ISSN0735-0015
DOI
StatusUdgivet - 2021

Fingeraftryk

Dyk ned i forskningsemnerne om 'Wild Bootstrap and Asymptotic Inference With Multiway Clustering'. Sammen danner de et unikt fingeraftryk.

Citationsformater