Wide subcategories of d-cluster tilting subcategories

Martin Herschend, Peter Jørgensen, Laertis Vaso

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

Abstract

A subcategory of an abelian category is wide if it is closed under sums, summands, kernels, cokernels, and extensions. Wide subcategories provide a significant interface between representation theory and combinatorics. If Φ is a finite dimensional algebra, then each functorially finite wide subcategory of mod(Φ) is of the form φ∗(mod(Γ)) in an essentially unique way, where Γ is a finite dimensional algebra and Φ –→ φ Γ is an algebra epimorphism satisfying Tor Φ 1 (Γ, Γ) = 0. Let F ⊆ mod(Φ) be a d-cluster tilting subcategory as defined by Iyama. Then F is a d-abelian category as defined by Jasso, and we call a subcategory of F wide if it is closed under sums, summands, d-kernels, d-cokernels, and d-extensions. We generalise the above description of wide subcategories to this setting: Each functorially finite wide subcategory of F is of the form φ∗(G) in an essentially unique way, where Φ –→ φ Γ is an algebra epimorphism satisfying Tor Φ d (Γ, Γ) = 0, and G ⊆ mod(Γ) is a d-cluster tilting subcategory. We illustrate the theory by computing the wide subcategories of some d-cluster tilting subcategories F ⊆ mod(Φ) over algebras of the form Φ = kA m/(rad kA m) l.

OriginalsprogEngelsk
TidsskriftTransactions of the American Mathematical Society
Vol/bind373
Nummer4
Sider (fra-til)2281-2309
Antal sider29
ISSN0002-9947
DOI
StatusUdgivet - 2020
Udgivet eksterntJa

Fingeraftryk

Dyk ned i forskningsemnerne om 'Wide subcategories of d-cluster tilting subcategories'. Sammen danner de et unikt fingeraftryk.

Citationsformater