When long memory meets the Kalman filter: A comparative study

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

The finite sample properties of the state space methods applied to long memory time series are analyzed through Monte Carlo simulations. The state space setup allows to introduce a novel modeling approach in the long memory framework, which directly tackles measurement errors and random level shifts. Missing values and several alternative sources of misspecification are also considered. It emerges that the state space methodology provides a valuable alternative for the estimation of the long memory models, under different data generating processes, which are common in financial and economic series. Two empirical applications highlight the practical usefulness of the proposed state space methods.
OriginalsprogEngelsk
TidsskriftComputational Statistics & Data Analysis
Vol/bind76
Nummer2
Sider (fra-til)301-319
Antal sider19
ISSN0167-9473
DOI
StatusUdgivet - aug. 2014

Se relationer på Aarhus Universitet Citationsformater

ID: 54407444