Water-Gas-Shift over Metal-Free Nanocrystalline Ceria: An Experimental and Theoretical Study

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

DOI

  • Curtis J. Guild, University of Connecticut, Storrs
  • ,
  • Dimitriy Vovchok, SUNY Coll Oswego, State University of New York (SUNY) System, Dept Phys
  • ,
  • David A. Kriz, University of Connecticut, Storrs
  • ,
  • Albert Bruix Fusté
  • ,
  • Bjork Hammer
  • Jordi Llorca, Polytechnic University of Catalonia
  • ,
  • Wenqian Xu, Brookhaven Natl Lab, Brookhaven National Laboratory, United States Department of Energy (DOE), Nucl Sci & Technol Dept
  • ,
  • Abdelhamid El-Sawy, Department of Botany, Faculty of Science, Tanta University
  • ,
  • Sourav Biswas, University of Connecticut, Storrs
  • ,
  • Jose A. Rodriguez, Brookhaven Natl Lab, Brookhaven National Laboratory, United States Department of Energy (DOE), Nucl Sci & Technol Dept
  • ,
  • Sanjaya D. Senanayake, Brookhaven Natl Lab, Brookhaven National Laboratory, United States Department of Energy (DOE), Nucl Sci & Technol Dept
  • ,
  • Steven L. Suib, University of Connecticut, Storrs

A tandem experimental and theoretical investigation of a mesoporous ceria catalyst reveals the properties of the metal oxide are conducive for activity typically ascribed to metals, suggesting reduced Ce3+ and oxygen vacancies are responsible for the inherent bi-functionality of CO oxidation and dissociation of water required for facilitating the production of H-2. The degree of reduction of the ceria, specifically the (100) face, is found to significantly influence the binding of reagents, suggesting reduced surfaces harbor the necessary reactive sites. The metal-free catalysis of the reaction is significant for catalyst design considerations, and the suite of in situ analyses provides a comprehensive study of the dynamic nature of the high surface area catalyst system. This study postulates feasible improvements in catalytic activity may redirect the purpose of the water-gas shift reaction from CO purification to primary hydrogen production.

OriginalsprogEngelsk
TidsskriftChemCatChem
Vol/bind9
Nummer8
Sider (fra-til)1373-1377
Antal sider5
ISSN1867-3880
DOI
StatusUdgivet - 21 apr. 2017

Se relationer på Aarhus Universitet Citationsformater

ID: 113008434