Visible Light Neural Stimulation on graphitic-Carbon Nitride/Graphene Photocatalytic Fibers

Zhongyang Zhang, Ruodan Xu, Zegao Wang, Mingdong Dong, Bianxiao Cui, Menglin Chen

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

74 Citationer (Scopus)

Abstract

Light stimulation allows remote and spatiotemporally accurate operation that has been applied as effective, noninvasive means of therapeutic interventions. Here, visible-light neural stimulation of graphitic carbon nitride (g-C 3N 4), an emerging photocatalyst with visible-light optoelectronic conversion, was for the first time investigated. Specifically, g-C 3N 4 was combined with graphene oxide (GO) in a three-dimensional manner on the surfaces of electrospun polycaprolactone/gelatin (PG) fibers and functioned as a biocompatible interface for visible-light stimulating neuronal differentiation. The enhanced photocatalytic function of g-C 3N 4 was realized by spreading g-C 3N 4 on GO coated electrospun (PG) microfibers to improve both charge separation and surface area. Ascorbic acid (AA) was used in the cell culture medium not only as a photoexcited hole scavenger but also as a mediator of GO reduction to further improve the electrical conductivity. The successful coatings of g-C 3N 4, GO, and AA-mediated GO reduction were confirmed using scanning electron microscopy, photoluminescence, Raman spectroscopy, and X-ray photoelectron spectroscopy. Biocompatibility of g-C 3N 4 (0.01-0.9 mg/mL) to PC12 cells was confirmed by the lactate dehydrogenase (LDH) assay, Live-Dead staining, and colorimetric cell viability assay CCK-8. Under a bidaily, monochromatic light stimulation at a wavelength of 450 nm at 10 mW/cm 2, a 18.5-fold increase of neurite outgrowth of PC12 was found on g-C 3N 4-coated fibers, while AA-reduced GO-g-C 3N 4 hybrid brought a further 2.6-fold increase, suggesting its great potential as a visible-light neural stimulator that could optically enhance neural growth in a spatiotemporal-specific manner.

OriginalsprogEngelsk
TidsskriftA C S Applied Materials and Interfaces
Vol/bind9
Nummer40
Sider (fra-til)34736–34743
Antal sider8
ISSN1944-8244
DOI
StatusUdgivet - 2017

Fingeraftryk

Dyk ned i forskningsemnerne om 'Visible Light Neural Stimulation on graphitic-Carbon Nitride/Graphene Photocatalytic Fibers'. Sammen danner de et unikt fingeraftryk.

Citationsformater