Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avis › Tidsskriftartikel › Forskning › peer review
Variational Neural Networks implementation in Pytorch and JAX[Formula presented]. / Oleksiienko, Illia; Tran, Dat Thanh; Iosifidis, Alexandros.
I: Software Impacts, Bind 14, 100431, 11.2022.Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avis › Tidsskriftartikel › Forskning › peer review
}
TY - JOUR
T1 - Variational Neural Networks implementation in Pytorch and JAX[Formula presented]
AU - Oleksiienko, Illia
AU - Tran, Dat Thanh
AU - Iosifidis, Alexandros
N1 - Publisher Copyright: © 2022 The Author(s)
PY - 2022/11
Y1 - 2022/11
N2 - Bayesian Neural Networks consider a distribution over the network's weights, which provides a tool to estimate the uncertainty of a neural network by sampling different models for each input. Variational Neural Networks (VNNs) consider a probability distribution over each layer's outputs and generate parameters for it with the corresponding sub-layers. We provide two Python implementations of VNNs with PyTorch and JAX machine learning libraries that ensure reproducibility of the experimental results and allow implementing uncertainty estimation methods easily in other projects.
AB - Bayesian Neural Networks consider a distribution over the network's weights, which provides a tool to estimate the uncertainty of a neural network by sampling different models for each input. Variational Neural Networks (VNNs) consider a probability distribution over each layer's outputs and generate parameters for it with the corresponding sub-layers. We provide two Python implementations of VNNs with PyTorch and JAX machine learning libraries that ensure reproducibility of the experimental results and allow implementing uncertainty estimation methods easily in other projects.
KW - Bayesian deep learning
KW - Bayesian Neural Networks
KW - JAX
KW - PyTorch
KW - Uncertainty estimation
UR - http://www.scopus.com/inward/record.url?scp=85140775113&partnerID=8YFLogxK
U2 - 10.1016/j.simpa.2022.100431
DO - 10.1016/j.simpa.2022.100431
M3 - Journal article
AN - SCOPUS:85140775113
VL - 14
JO - Software Impacts
JF - Software Impacts
SN - 2665-9638
M1 - 100431
ER -