Aarhus University Seal / Aarhus Universitets segl

Validation of structural brain connectivity networks: The impact of scanning parameters

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

  • Karen S. Ambrosen, Danmarks Tekniske Universitet, Københavns Universitet
  • ,
  • Simon F. Eskildsen
  • Max Hinne, Radboud University Nijmegen
  • ,
  • Kristine Krug, Oxford University, Oxford, UK., Otto von Guericke University, Leibniz Institute for Neurobiology
  • ,
  • Henrik Lundell, Københavns Universitet
  • ,
  • Mikkel N. Schmidt, Danmarks Tekniske Universitet
  • ,
  • Marcel A.J. van Gerven, Radboud University Nijmegen
  • ,
  • Morten Mørup, Danmarks Tekniske Universitet
  • ,
  • Tim B. Dyrby, Danmarks Tekniske Universitet, Københavns Universitet

Evaluation of the structural connectivity (SC) of the brain based on tractography has mainly focused on the choice of diffusion model, tractography algorithm, and their respective parameter settings. Here, we systematically validate SC derived from a post mortem monkey brain, while varying key acquisition parameters such as the b-value, gradient angular resolution and image resolution. As gold standard we use the connectivity matrix obtained invasively with histological tracers by Markov et al. (2014). As performance metric, we use cross entropy as a measure that enables comparison of the relative tracer labeled neuron counts to the streamline counts from tractography. We find that high angular resolution and high signal-to-noise ratio are important to estimate SC, and that SC derived from low image resolution (1.03 mm3) are in better agreement with the tracer network, than those derived from high image resolution (0.53 mm3) or at an even lower image resolution (2.03 mm3). In contradiction, sensitivity and specificity analyses suggest that if the angular resolution is sufficient, the balanced compromise in which sensitivity and specificity are identical remains 60–64% regardless of the other scanning parameters. Interestingly, the tracer graph is assumed to be the gold standard but by thresholding, the balanced compromise increases to 70–75%. Hence, by using performance metrics based on binarized tracer graphs, one risks losing important information, changing the performance of SC graphs derived by tractography and their dependence of different scanning parameters.

OriginalsprogEngelsk
Artikelnummer116207
TidsskriftNeuroImage
Vol/bind204
ISSN1053-8119
DOI
StatusUdgivet - 1 jan. 2020

Se relationer på Aarhus Universitet Citationsformater

ID: 169326919