Validation and implementation of a method for microarray gene expression profiling of minor B-cell subpopulations in man

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

  • Kim Steve Bergkvist, Danmark
  • Mette Nyegaard
  • Martin Bøgsted
  • Alexander Schmitz
  • Julie Støve Bødker, Danmark
  • Simon Mylius Rasmussen
  • ,
  • Martin Perez-Andres
  • ,
  • Steffen Falgreen
  • ,
  • Anders Ellern Bilgrau, Danmark
  • Malene Krag Kjeldsen, Danmark
  • Michael Gaihede
  • Martin Agge Nørgaard, Danmark
  • John Bæch, Danmark
  • Marie-Louise Grønholdt, Danmark
  • Frank Svendsen Jensen, Danmark
  • Preben Johansen, Danmark
  • Karen Dybkær, Danmark
  • Hans Erik Johnsen, Danmark
Abstract
BACKGROUND:
This report describes a method for the generation of global gene expression profiles from low frequent B-cell subsets by using fluorescence-activated cell sorting and RNA amplification. However, some of the differentiating compartments involve a low number of cells and therefore it is important to optimize and validate each step in the procedure.
METHODS:
Normal lymphoid tissues from blood, tonsils, thymus and bone marrow were immunophenotyped by the 8-colour Euroflow panel using multiparametric flow cytometry. Subsets of B-cells containing cell numbers ranging from 800 to 33,000 and with frequencies varying between 0.1 and 10 percent were sorted, subjected to mRNA purification, amplified by the NuGEN protocol and finally analysed by the Affymetrix platform.
RESULTS:
Following a step by step strategy, each step in the workflow was validated and the sorting/storage conditions optimized as described in this report. First, an analysis of four cancer cell lines on Affymetrix arrays, using either 100 ng RNA labelled with the Ambion standard protocol or 1 ng RNA amplified and labelled by the NuGEN protocol, revealed a significant correlation of gene expressions (r >= 0.9 for all). Comparison of qPCR data in samples with or without amplification for 8 genes showed that a relative difference between six cell lines was preserved (r >= 0.9). Second, a comparison of cells sorted into PrepProtect, RNAlater or directly into lysis/binding buffer showed a higher yield of purified mRNA following storage in lysis/binding buffer (p < 0.001). Third, the identity of the B-cell subsets validated by the cluster of differentiation (CD) membrane profile was highly concordant with the transcriptional gene expression (p-values <0.001). Finally, in normal bone marrow and tonsil samples, eight evaluated genes were expressed in accordance with the biology of lymphopoiesis (p-values < 0.001), which enabled the generation of a gene-specific B-cell atlas.
CONCLUSION:
A description of the implementation and validation of commercially available kits in the laboratory has been examined. This included steps for cell sorting, cell lysis/stabilization, RNA isolation, RNA concentration and amplification for microarray analysis. The workflow described in this report will enable the generation of microarray data from minor sorted B-cell subsets.
OriginalsprogEngelsk
TidsskriftB M C Immunology
Vol/bind15
Nummer3
ISSN1471-2172
DOI
StatusUdgivet - 31 jan. 2014

Se relationer på Aarhus Universitet Citationsformater

ID: 69854562