Using machine learning to improve the diagnostic accuracy of the modified Duke/ESC 2015 criteria in patients with suspected prosthetic valve endocarditis – a proof of concept study

D. ten Hove*, R. H.J.A. Slart, A. W.J.M. Glaudemans, D. F. Postma, A. Gomes, L. E. Swart, W. Tanis, P. P.van Geel, G. Mecozzi, R. P.J. Budde, K. Mouridsen, B. Sinha

*Corresponding author af dette arbejde

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

Fingeraftryk

Dyk ned i forskningsemnerne om 'Using machine learning to improve the diagnostic accuracy of the modified Duke/ESC 2015 criteria in patients with suspected prosthetic valve endocarditis – a proof of concept study'. Sammen danner de et unikt fingeraftryk.

Medicine and Dentistry

Keyphrases

Neuroscience

Chemical Engineering

Agricultural and Biological Sciences