Aarhus University Seal / Aarhus Universitets segl

Unbiased stereological estimation of d-dimensional volume in Rn from an isotropic random slice through a fixed point

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

Standard

Unbiased stereological estimation of d-dimensional volume in Rn from an isotropic random slice through a fixed point. / Jensen, Eva B. Vedel; Kiêu, K.

I: Advances in Applied Probability, Bind 26, Nr. 1, 01.03.1994, s. 1-12.

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

Harvard

APA

CBE

MLA

Vancouver

Author

Bibtex

@article{0457a8f26c974069bc28b55923be29e1,
title = "Unbiased stereological estimation of d-dimensional volume in Rn from an isotropic random slice through a fixed point",
abstract = "Unbiased stereological estimators of d-dimensional volume in R(n) are derived, based on information from an isotropic random r-slice through a specified point. The content of the slice can be subsampled by means of a spatial grid. The estimators depend only on spatial distances. As a fundamental lemma, an explicit formula for the probability that an isotropic random r-slice in R(n) through 0 hits a fixed point in R(n) is given.",
keywords = "CROFTON FORMULA, INTEGRAL GEOMETRY, ISOTROPIC SUBSPACES, SLICES, STEREOLOGY",
author = "Jensen, {Eva B. Vedel} and K Ki{\^e}u",
year = "1994",
month = mar,
day = "1",
doi = "10.2307/1427575",
language = "English",
volume = "26",
pages = "1--12",
journal = "Advances in Applied Probability",
issn = "0001-8678",
publisher = "Applied Probability Trust",
number = "1",

}

RIS

TY - JOUR

T1 - Unbiased stereological estimation of d-dimensional volume in Rn from an isotropic random slice through a fixed point

AU - Jensen, Eva B. Vedel

AU - Kiêu, K

PY - 1994/3/1

Y1 - 1994/3/1

N2 - Unbiased stereological estimators of d-dimensional volume in R(n) are derived, based on information from an isotropic random r-slice through a specified point. The content of the slice can be subsampled by means of a spatial grid. The estimators depend only on spatial distances. As a fundamental lemma, an explicit formula for the probability that an isotropic random r-slice in R(n) through 0 hits a fixed point in R(n) is given.

AB - Unbiased stereological estimators of d-dimensional volume in R(n) are derived, based on information from an isotropic random r-slice through a specified point. The content of the slice can be subsampled by means of a spatial grid. The estimators depend only on spatial distances. As a fundamental lemma, an explicit formula for the probability that an isotropic random r-slice in R(n) through 0 hits a fixed point in R(n) is given.

KW - CROFTON FORMULA

KW - INTEGRAL GEOMETRY

KW - ISOTROPIC SUBSPACES

KW - SLICES

KW - STEREOLOGY

U2 - 10.2307/1427575

DO - 10.2307/1427575

M3 - Journal article

VL - 26

SP - 1

EP - 12

JO - Advances in Applied Probability

JF - Advances in Applied Probability

SN - 0001-8678

IS - 1

ER -