Unbiased choice of global clustering parameters for single-molecule localization microscopy

Pietro Verzelli, Andreas Nold, Chao Sun, Mike Heilemann, Erin M Schuman, Tatjana Tchumatchenko

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

Abstract

Single-molecule localization microscopy resolves objects below the diffraction limit of light via sparse, stochastic detection of target molecules. Single molecules appear as clustered detection events after image reconstruction. However, identification of clusters of localizations is often complicated by the spatial proximity of target molecules and by background noise. Clustering results of existing algorithms often depend on user-generated training data or user-selected parameters, which can lead to unintentional clustering errors. Here we suggest an unbiased algorithm (FINDER) based on adaptive global parameter selection and demonstrate that the algorithm is robust to noise inclusion and target molecule density. We benchmarked FINDER against the most common density based clustering algorithms in test scenarios based on experimental datasets. We show that FINDER can keep the number of false positive inclusions low while also maintaining a low number of false negative detections in densely populated regions.

OriginalsprogEngelsk
Artikelnummer22561
TidsskriftScientific Reports
Vol/bind12
Nummer1
Sider (fra-til)22561
ISSN2045-2322
DOI
StatusUdgivet - 29 dec. 2022
Udgivet eksterntJa

Fingeraftryk

Dyk ned i forskningsemnerne om 'Unbiased choice of global clustering parameters for single-molecule localization microscopy'. Sammen danner de et unikt fingeraftryk.

Citationsformater