Publikation: Bidrag til bog/antologi/rapport/proceeding › Konferencebidrag i proceedings › Forskning › peer review
Forlagets udgivne version
Anomaly detection is a key goal of autonomous surveillance systems that should be able to alert unusual observations. In this paper, we propose a holistic anomaly detection system using deep neural networks for surveillance of critical infrastructures (e.g., airports, harbors, warehouses) using an unmanned aerial vehicle (UAV). First, we present a heuristic method for the explicit representation of spatial layouts of objects in bird-view images. Then, we propose a deep neural network architecture for unsupervised anomaly detection (UAV-AdNet), which is trained on environment representations and GPS labels of bird-view images jointly. Unlike studies in the literature, we combine GPS and image data to predict abnormal observations. We evaluate our model against several baselines on our aerial surveillance dataset and show that it performs better in scene reconstruction and several anomaly detection tasks. The codes, trained models, dataset, and video will be available at https://bozcani.github.io/uavadnet.
Originalsprog | Engelsk |
---|---|
Titel | 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems |
Antal sider | 7 |
Forlag | IEEE |
Udgivelsesår | okt. 2020 |
Sider | 1158-1164 |
Artikelnummer | 9341790 |
ISBN (Elektronisk) | 9781728162126 |
DOI | |
Status | Udgivet - okt. 2020 |
Begivenhed | 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems - Caesars Forum, Las Vegas, USA Varighed: 25 okt. 2020 → 24 jan. 2021 https://www.iros2020.org/ |
Konference | 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems |
---|---|
Lokation | Caesars Forum |
Land | USA |
By | Las Vegas |
Periode | 25/10/2020 → 24/01/2021 |
Internetadresse |
Se relationer på Aarhus Universitet Citationsformater
ID: 215325658