Twisted Ruelle zeta function at zero for compact hyperbolic surfaces

Jan Frahm*, Polyxeni Spilioti

*Corresponding author af dette arbejde

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

3 Citationer (Scopus)

Abstract

Let X be an orientable compact connected hyperbolic surface of genus g. In this paper, we prove that the twisted Selberg and Ruelle zeta functions, associated with an arbitrary finite-dimensional complex representation χ of π 1(X) admit a meromorphic continuation to C. Moreover, we study the behavior of the twisted Ruelle zeta function at s=0 and prove that at this point it has a zero of order dim⁡(χ)(2g−2).

OriginalsprogEngelsk
TidsskriftJournal of Number Theory
Vol/bind243
Sider (fra-til)38-61
Antal sider24
ISSN0022-314X
DOI
StatusUdgivet - feb. 2023

Fingeraftryk

Dyk ned i forskningsemnerne om 'Twisted Ruelle zeta function at zero for compact hyperbolic surfaces'. Sammen danner de et unikt fingeraftryk.
  • Symmetry Breaking in Mathematics

    Frahm, J. (PI), Weiske, C. (Deltager), Ditlevsen, J. (Deltager), Spilioti, P. (Deltager), Bang-Jensen, F. J. (Deltager) & Labriet, Q. (Deltager)

    01/08/201931/07/2024

    Projekter: ProjektForskning

Citationsformater