Abstract
We prove a family of Weitzenböck formulas on a Riemannian foliation with totally geodesic leaves. These Weitzenböck formulas are naturally parametrized by the canonical variation of the metric. As a consequence, under natural geometric conditions, the horizontal Laplacian satisfies a generalized curvature dimension inequality. Among other things, this curvature dimension inequality implies Li-Yau estimates for positive solutions of the horizontal heat equation, sharp eigenvalue estimates and a sub-Riemannian Bonnet- Myers compactness theorem whose assumptions only rely on the intrinsic geometry of the horizontal distribution.
Originalsprog | Engelsk |
---|---|
Tidsskrift | Communications in Analysis and Geometry |
Vol/bind | 24 |
Nummer | 5 |
Sider (fra-til) | 913-937 |
Antal sider | 25 |
ISSN | 1019-8385 |
DOI | |
Status | Udgivet - 2016 |
Udgivet eksternt | Ja |