Transverse Weitzenböck formulas and curvature dimension inequalities on Riemannian foliations with totally geodesic leaves

Fabrice Baudoin, Bumsik Kim, Jing Wang

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

18 Citationer (Scopus)

Abstract

We prove a family of Weitzenböck formulas on a Riemannian foliation with totally geodesic leaves. These Weitzenböck formulas are naturally parametrized by the canonical variation of the metric. As a consequence, under natural geometric conditions, the horizontal Laplacian satisfies a generalized curvature dimension inequality. Among other things, this curvature dimension inequality implies Li-Yau estimates for positive solutions of the horizontal heat equation, sharp eigenvalue estimates and a sub-Riemannian Bonnet- Myers compactness theorem whose assumptions only rely on the intrinsic geometry of the horizontal distribution.

OriginalsprogEngelsk
TidsskriftCommunications in Analysis and Geometry
Vol/bind24
Nummer5
Sider (fra-til)913-937
Antal sider25
ISSN1019-8385
DOI
StatusUdgivet - 2016
Udgivet eksterntJa

Fingeraftryk

Dyk ned i forskningsemnerne om 'Transverse Weitzenböck formulas and curvature dimension inequalities on Riemannian foliations with totally geodesic leaves'. Sammen danner de et unikt fingeraftryk.

Citationsformater