Aarhus Universitets segl

Transport of structure in higher homological algebra

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

  • Raphael Bennett-Tennenhaus, Bielefeld University
  • ,
  • Amit Shah

We fill a gap in the literature regarding ‘transport of structure’ for (n+2)-angulated, n-exact, n-abelian and n-exangulated categories appearing in (classical and higher) homological algebra. As an application of our main results, we show that a skeleton of one of these kinds of categories inherits the same structure in a canonical way, up to equivalence. In particular, it follows that a skeleton of a weak (n+2)-angulated category is in fact what we call a strong (n+2)-angulated category. When n=1 this clarifies a technical concern with the definition of a cluster category. We also introduce the notion of an n-exangulated functor between n-exangulated categories. This recovers the definition of an (n+2)-angulated functor when the categories concerned are (n+2)-angulated, and the higher analogue of an exact functor when the categories concerned are n-exact.

OriginalsprogEngelsk
TidsskriftJournal of Algebra
Vol/bind574
Sider (fra-til)514-549
Antal sider36
ISSN0021-8693
DOI
StatusUdgivet - 15 maj 2021
Eksternt udgivetJa

Se relationer på Aarhus Universitet Citationsformater

ID: 212764717