Towards Personalized Similarity Search for Vector Databases

Marek Mahrík*, Matúš Šikyňa*, Vladimir Mic, Pavel Zezula*

*Corresponding author af dette arbejde

Publikation: Bidrag til bog/antologi/rapport/proceedingKonferencebidrag i proceedingsForskningpeer review

Abstract

The importance of similarity search has become prominent in the fast-evolving vector databases, which apply content embedding techniques on complex data to produce and manage large collections of high-dimensional vectors. Processing of such data is only possible by using a similarity function for storage, structure, and retrieval. However, if multiple users access the collection, their views on similarity can differ as similarity, in general, is subjective and context-dependent. In this article, we elaborate on the problem of a similarity search engine implementation, where users use a common index but search with personalised views of similarity, implemented by a possibly different similarity model. Specifically, we define a foundational theoretical framework and conduct experiments on real-life data to confirm the viability of such an approach. The experiments also indicate future research directions needed to propose and implement an effective and efficient personalised similarity search engine.
OriginalsprogEngelsk
TitelSimilarity Search and Applications - 17th International Conference, SISAP 2024, Proceedings
RedaktørerEdgar Chávez, Benjamin Kimia, Jakub Lokoč, Marco Patella, Jan Sedmidubsky
Antal sider14
UdgivelsesstedCham
ForlagSpringer
Publikationsdato2025
Sider126-139
ISBN (Trykt)978-3-031-75822-5
ISBN (Elektronisk)978-3-031-75823-2
DOI
StatusUdgivet - 2025
Begivenhed17th International Conference, SISAP 2024 - Providence, USA
Varighed: 4 jun. 20246 jun. 2024
Konferencens nummer: 17
https://www.sisap.org/2024/

Konference

Konference17th International Conference, SISAP 2024
Nummer17
Land/OmrådeUSA
ByProvidence
Periode04/06/202406/06/2024
Internetadresse
NavnLecture Notes in Computer Science
Vol/bind15268
ISSN0302-9743

Fingeraftryk

Dyk ned i forskningsemnerne om 'Towards Personalized Similarity Search for Vector Databases'. Sammen danner de et unikt fingeraftryk.

Citationsformater