Toric geometry of Spin(7)-manifolds

Thomas Bruun Madsen, Andrew Francis Swann

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

2 Citationer (Scopus)

Abstract

We study $ \operatorname{Spin}(7) $-manifolds with an effective multi-Hamiltonian action of a four-torus. On an open dense set, we provide a Gibbons-Hawking type ansatz that describes such geometries in terms of a symmetric $ 4\times 4 $-matrix of functions. This description leads to the 1st known $ \operatorname{Spin}(7) $-manifolds with a rank $ 4 $ symmetry group and full holonomy. We also show that the multi-moment map exhibits the full orbit space topologically as a smooth four-manifold, containing a trivalent graph in $ \mathbb{R}^4 $ as the image of the set of the special orbits.

OriginalsprogEngelsk
TidsskriftInternational Mathematics Research Notices
Vol/bind2021
Nummer21
Sider (fra-til)16511-16529
Antal sider19
ISSN1073-7928
DOI
StatusUdgivet - 1 nov. 2021

Fingeraftryk

Dyk ned i forskningsemnerne om 'Toric geometry of Spin(7)-manifolds'. Sammen danner de et unikt fingeraftryk.

Citationsformater