Projekter pr. år
Abstract
We study $ \operatorname{Spin}(7) $-manifolds with an effective multi-Hamiltonian action of a four-torus. On an open dense set, we provide a Gibbons-Hawking type ansatz that describes such geometries in terms of a symmetric $ 4\times 4 $-matrix of functions. This description leads to the 1st known $ \operatorname{Spin}(7) $-manifolds with a rank $ 4 $ symmetry group and full holonomy. We also show that the multi-moment map exhibits the full orbit space topologically as a smooth four-manifold, containing a trivalent graph in $ \mathbb{R}^4 $ as the image of the set of the special orbits.
Originalsprog | Engelsk |
---|---|
Tidsskrift | International Mathematics Research Notices |
Vol/bind | 2021 |
Nummer | 21 |
Sider (fra-til) | 16511-16529 |
Antal sider | 19 |
ISSN | 1073-7928 |
DOI | |
Status | Udgivet - 1 nov. 2021 |
Fingeraftryk
Dyk ned i forskningsemnerne om 'Toric geometry of Spin(7)-manifolds'. Sammen danner de et unikt fingeraftryk.Projekter
- 1 Afsluttet
-
Torus symmetry and Einstein metrics
Swann, A. F. (Deltager)
01/11/2016 → 31/12/2019
Projekter: Projekt › Forskning