Time-dependent scattering theory on manifolds

K. Ito*, E. Skibsted

*Corresponding author af dette arbejde

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

2 Citationer (Scopus)

Abstract

This is the third and the last paper in a series of papers on spectral and scattering theory for the Schrödinger operator on a manifold possessing an escape function, for example a manifold with asymptotically Euclidean and/or hyperbolic ends. Here we discuss the time-dependent scattering theory. A long-range perturbation is allowed, and scattering by obstacles, possibly non-smooth and/or unbounded in a certain way, is included in the theory. We also resolve a conjecture by Hempel–Post–Weder on cross-ends transmissions between two or more ends, formulated in a time-dependent manner.

OriginalsprogEngelsk
TidsskriftJournal of Functional Analysis
Vol/bind277
Nummer5
Sider (fra-til)1423-1468
Antal sider46
ISSN0022-1236
DOI
StatusUdgivet - sep. 2019

Fingeraftryk

Dyk ned i forskningsemnerne om 'Time-dependent scattering theory on manifolds'. Sammen danner de et unikt fingeraftryk.

Citationsformater