Aarhus University Seal / Aarhus Universitets segl

The shear construction

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review



  • Marco Freibert, Mathematisches Seminar, Christian-Albrechts-Universität zu Kiel
  • ,
  • Andrew Swann

The twist construction is a method to build new interesting examples of geometric structures with torus symmetry from well-known ones. In fact it can be used to construct arbitrary nilmanifolds from tori. In our previous paper, we presented a generalization of the twist, a shear construction of rank one, which allowed us to build certain solvable Lie algebras from R n via several shears. Here, we define the higher rank version of this shear construction using vector bundles with flat connections instead of group actions. We show that this produces any solvable Lie algebra from R n by a succession of shears. We give examples of the shear and discuss in detail how one can obtain certain geometric structures (calibrated G 2 , co-calibrated G 2 and almost semi-Kähler) on three-step solvable Lie algebras by shearing almost Abelian Lie algebras. This discussion yields a classification of calibrated G 2 -structures on Lie algebras of the form (h 3 ⊕ R 3 ) ⋊ R.

TidsskriftGeometriae Dedicata
Sider (fra-til)71-101
Antal sider31
StatusUdgivet - feb. 2019

Se relationer på Aarhus Universitet Citationsformater


ID: 127226514