The Set of Destabilizing Curves for Deformed Hermitian Yang–Mills and Z-Critical Equations on Surfaces

Sohaib Khalid*, Zakarias Sjöström Dyrefelt

*Corresponding author af dette arbejde

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

Abstract

We show that on any compact Kähler surface existence of solutions to the Z-critical equation can be characterized using a finite number of effective conditions, where the number of conditions is bounded above by the Picard number of the surface. This leads to a first PDE analogue of the locally finite wall-chamber decomposition in Bridgeland stability. As an application we characterize optimally destabilizing curves for Donaldson’s J-equation and the deformed Hermitian Yang–Mills equation, prove a non-existence result for optimally destabilizing test configurations for uniform J-stability, and remark on improvements to convergence results for certain geometric flows.

OriginalsprogEngelsk
TidsskriftInternational Mathematics Research Notices
Vol/bind2024
Nummer7
Sider (fra-til)5773-5814
Antal sider42
ISSN1073-7928
DOI
StatusUdgivet - apr. 2024

Fingeraftryk

Dyk ned i forskningsemnerne om 'The Set of Destabilizing Curves for Deformed Hermitian Yang–Mills and Z-Critical Equations on Surfaces'. Sammen danner de et unikt fingeraftryk.

Citationsformater