Projekter pr. år
Abstract
We study a system of N fermions in the regime where the intensity of the interaction scales as 1 / N and with an effective semi-classical parameter ħ= N- 1 / d where d is the space dimension. For a large class of interaction potentials and of external electromagnetic fields, we prove the convergence to the Thomas–Fermi minimizers in the limit N→ ∞. The limit is expressed using many-particle coherent states and Wigner functions. The method of proof is based on a fermionic de Finetti–Hewitt–Savage theorem in phase space and on a careful analysis of the possible lack of compactness at infinity.
Originalsprog | Engelsk |
---|---|
Artikelnummer | 105 |
Tidsskrift | Calculus of Variations and Partial Differential Equations |
Vol/bind | 57 |
Nummer | 4 |
Antal sider | 42 |
ISSN | 0944-2669 |
DOI | |
Status | Udgivet - 1 aug. 2018 |
Fingeraftryk
Dyk ned i forskningsemnerne om 'The semi-classical limit of large fermionic systems'. Sammen danner de et unikt fingeraftryk.Projekter
- 1 Afsluttet
-
Semiclassical Quantum Mechanics
Fournais, S. (PI), Madsen, P. (Deltager), Mikkelsen, S. (Deltager), Miqueu, J.-P. C. (Deltager) & Bley, G. (Deltager)
01/07/2015 → 31/12/2020
Projekter: Projekt › Forskning