The semi-classical limit of large fermionic systems

Søren Fournais*, Mathieu Lewin, Jan Philip Solovej

*Corresponding author af dette arbejde

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

Abstract

We study a system of N fermions in the regime where the intensity of the interaction scales as 1 / N and with an effective semi-classical parameter ħ= N- 1 / d where d is the space dimension. For a large class of interaction potentials and of external electromagnetic fields, we prove the convergence to the Thomas–Fermi minimizers in the limit N→ ∞. The limit is expressed using many-particle coherent states and Wigner functions. The method of proof is based on a fermionic de Finetti–Hewitt–Savage theorem in phase space and on a careful analysis of the possible lack of compactness at infinity.

OriginalsprogEngelsk
Artikelnummer105
TidsskriftCalculus of Variations and Partial Differential Equations
Vol/bind57
Nummer4
Antal sider42
ISSN0944-2669
DOI
StatusUdgivet - 1 aug. 2018

Fingeraftryk

Dyk ned i forskningsemnerne om 'The semi-classical limit of large fermionic systems'. Sammen danner de et unikt fingeraftryk.
  • Semiclassical Quantum Mechanics

    Fournais, S. (PI), Madsen, P. (Deltager), Mikkelsen, S. (Deltager), Miqueu, J.-P. C. (Deltager) & Bley, G. (Deltager)

    01/07/201531/12/2020

    Projekter: ProjektForskning

Citationsformater