The role of monoaminergic neurotransmission for metabolic control in the fruit fly drosophila melanogaster

Yong Li, Lasse Tiedemann, Jakob Von Frieling, Stella Nolte, Samar El-Kholy, Flora Stephano, Christoph Gelhaus, Iris Bruchhaus, Christine Fink, Thomas Roeder*

*Corresponding author af dette arbejde

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

Abstract

Hormones control various metabolic traits comprising fat deposition or starvation resistance. Here we show that two invertebrate neurohormones, octopamine (OA) and tyramine (TA) as well as their associated receptors, had a major impact on these metabolic traits. Animals devoid of the monoamine OA develop a severe obesity phenotype. Using flies defective in the expression of receptors for OA and TA, we aimed to decipher the contributions of single receptors for these metabolic phenotypes. Whereas those animals impaired in octβ1r, octβ2r and tar1 share the obesity phenotype of OA-deficient (th-deficient) animals, the octβ1r, octβ2r deficient flies showed reduced insulin release, which is opposed to the situation found in th-deficient animals. On the other hand, OAMB deficient flies were leaner than controls, implying that the regulation of this phenotype is more complex than anticipated. Other phenotypes seen in th-deficient animals, such as the reduced ability to perform complex movements tasks can mainly be attributed to the octβ2r. Tissue-specific RNAi experiments revealed a very complex interorgan communication leading to the different metabolic phenotypes observed in OA or OA and TA-deficient flies.

OriginalsprogEngelsk
Artikelnummer60
TidsskriftFrontiers in Systems Neuroscience
Vol/bind11
ISSN1662-5137
DOI
StatusUdgivet - 22 aug. 2017
Udgivet eksterntJa

Fingeraftryk

Dyk ned i forskningsemnerne om 'The role of monoaminergic neurotransmission for metabolic control in the fruit fly drosophila melanogaster'. Sammen danner de et unikt fingeraftryk.

Citationsformater