The role of highly oxygenated organic molecules in the Boreal aerosol-cloud-climate system

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

DOI

  • Pontus Roldin, Lund University
  • ,
  • Mikael Ehn
  • Theo Kurtén, University of Helsinki
  • ,
  • Tinja Olenius, Stockholm University
  • ,
  • Matti P. Rissanen, University of Helsinki
  • ,
  • Nina Sarnela, University of Helsinki
  • ,
  • Jonas Elm
  • Pekka Rantala, University of Helsinki
  • ,
  • Liqing Hao, University of Eastern Finland
  • ,
  • Noora Hyttinen, University of Oulu
  • ,
  • Liine Heikkinen, University of Helsinki
  • ,
  • Douglas R. Worsnop, University of Helsinki
  • ,
  • Lukas Pichelstorfer, University of Salzburg, University of Helsinki
  • ,
  • Carlton Xavier, University of Helsinki
  • ,
  • Petri Clusius, University of Helsinki
  • ,
  • Emilie Öström, Lund University
  • ,
  • Tuukka Petäjä, University of Helsinki
  • ,
  • Markku Kulmala, University of Helsinki
  • ,
  • Hanna Vehkamäki, University of Helsinki
  • ,
  • Annele Virtanen, University of Eastern Finland
  • ,
  • Ilona Riipinen, Stockholm University
  • ,
  • Michael Boy, University of Helsinki

Over Boreal regions, monoterpenes emitted from the forest are the main precursors for secondary organic aerosol (SOA) formation and the primary driver of the growth of new aerosol particles to climatically important cloud condensation nuclei (CCN). Autoxidation of monoterpenes leads to rapid formation of Highly Oxygenated organic Molecules (HOM). We have developed the first model with near-explicit representation of atmospheric new particle formation (NPF) and HOM formation. The model can reproduce the observed NPF, HOM gas-phase composition and SOA formation over the Boreal forest. During the spring, HOM SOA formation increases the CCN concentration by ~10 % and causes a direct aerosol radiative forcing of -0.10 W/m2. In contrast, NPF reduces the number of CCN at updraft velocities < 0.2 m/s, and causes a direct aerosol radiative forcing of +0.15 W/m2. Hence, while HOM SOA contributes to climate cooling, NPF can result in climate warming over the Boreal forest.

OriginalsprogEngelsk
Artikelnummer4370
TidsskriftNature Communications
Vol/bind10
Nummer1
Antal sider1
ISSN2041-1723
DOI
StatusUdgivet - sep. 2019

Se relationer på Aarhus Universitet Citationsformater

ID: 167790624