The role of gentle algebras in higher homological algebra

Johanne Haugland, Karin M. Jacobsen*, Sibylle Schroll

*Corresponding author af dette arbejde

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

1 Citationer (Scopus)

Abstract

We investigate the role of gentle algebras in higher homological algebra. In the first part of the paper, we show that if the module category of a gentle algebra Λ contains a d-cluster tilting subcategory for some d ≥ 2, then Λ is a radical square zero Nakayama algebra. This gives a complete classification of weakly d-representation finite gentle algebras. In the second part, we use a geometric model of the derived category to prove a similar result in the triangulated setup. More precisely, we show that if Db(Λ) contains a d-cluster tilting subcategory that is closed under [d], then Λ is derived equivalent to an algebra of Dynkin type A. Furthermore, our approach gives a geometric characterization of all d-cluster tilting subcategories of Db(Λ) that are closed under [d].

OriginalsprogEngelsk
TidsskriftForum Mathematicum
Vol/bind34
Nummer5
Sider (fra-til)1255-1275
Antal sider21
ISSN0933-7741
DOI
StatusUdgivet - sep. 2022

Fingeraftryk

Dyk ned i forskningsemnerne om 'The role of gentle algebras in higher homological algebra'. Sammen danner de et unikt fingeraftryk.

Citationsformater