TY - JOUR
T1 - The Rational Design and Development of Microalgae-Based Biohybrid Materials for Biomedical Applications
AU - Zhang, Zhongyang
AU - Chen, Yumeng
AU - Klausen, Lasse Hyldgaard
AU - Skaanvik, Sebastian Amland
AU - Wang, Dan
AU - Chen, Jianfeng
AU - Dong, Mingdong
PY - 2023/5
Y1 - 2023/5
N2 - Microalgae are a group of microscopic eukaryotic organisms that can transform carbon dioxide into diverse bioactive compounds through photosynthesis using chlorophyll a. Over the past decade, biohybrid materials comprising live microalgae and other biocompatible components have exhibited tremendous potential in solving many medical challenges, such as oncotherapy, tissue reconstruction, and drug delivery. Microalgae immobilized within conventional biomaterials can maintain their photosynthetic activity for an extended period of time, thereby providing local oxygen and working as biocompatible interfacing materials for regulating cell activities. The motility of microalgae has also inspired the development of biohybrid microrobots, in which drug molecules can be bound to the surface of microalgae via noncovalent adsorption and delivered to the target area through precisely controlled locomotion. Moreover, the autofluorescence, phototaxis, and biomass production of microalgae can be integrated into the design of novel biohybrid materials with versatile functions. Furthermore, through appropriate genetic manipulation, engineered microalgae can endow biohybrid materials with novel properties, such as specific cell-targeting capability and the local release of recombinant proteins from algae cells—technologies that show promise for promoting and diversifying the clinical use of microalgae-based biohybrid materials (MBBMs) in several fields of biomedicine. Herein, we summarize the fabrication, physiology, and locomotion ability of MBBMs; we then review typical and recent reports on the use of MBBMs in the biomedical field; finally, we provide critical discussions on the challenges and future perspectives of MBBMs.
AB - Microalgae are a group of microscopic eukaryotic organisms that can transform carbon dioxide into diverse bioactive compounds through photosynthesis using chlorophyll a. Over the past decade, biohybrid materials comprising live microalgae and other biocompatible components have exhibited tremendous potential in solving many medical challenges, such as oncotherapy, tissue reconstruction, and drug delivery. Microalgae immobilized within conventional biomaterials can maintain their photosynthetic activity for an extended period of time, thereby providing local oxygen and working as biocompatible interfacing materials for regulating cell activities. The motility of microalgae has also inspired the development of biohybrid microrobots, in which drug molecules can be bound to the surface of microalgae via noncovalent adsorption and delivered to the target area through precisely controlled locomotion. Moreover, the autofluorescence, phototaxis, and biomass production of microalgae can be integrated into the design of novel biohybrid materials with versatile functions. Furthermore, through appropriate genetic manipulation, engineered microalgae can endow biohybrid materials with novel properties, such as specific cell-targeting capability and the local release of recombinant proteins from algae cells—technologies that show promise for promoting and diversifying the clinical use of microalgae-based biohybrid materials (MBBMs) in several fields of biomedicine. Herein, we summarize the fabrication, physiology, and locomotion ability of MBBMs; we then review typical and recent reports on the use of MBBMs in the biomedical field; finally, we provide critical discussions on the challenges and future perspectives of MBBMs.
KW - Biohybrid materials
KW - Biointerface
KW - Microalgae
KW - Microrobots
UR - http://www.scopus.com/inward/record.url?scp=85160086732&partnerID=8YFLogxK
U2 - 10.1016/j.eng.2022.09.016
DO - 10.1016/j.eng.2022.09.016
M3 - Review
AN - SCOPUS:85160086732
SN - 2095-8099
VL - 24
SP - 102
EP - 113
JO - Engineering
JF - Engineering
ER -