TY - JOUR
T1 - The pea Sym37 receptor kinase gene controls infection-thread initiation and nodule development
AU - Zhukov, Vladimir
AU - Radutoiu, Simona
AU - Madsen, Lene H
AU - Rychagova, Tamara
AU - Ovchinnikova, Evgenia
AU - Borisov, Alex
AU - Tikhonovich, Igor
AU - Stougaard, Jens
PY - 2008
Y1 - 2008
N2 - Phenotypic characterization of pea symbiotic mutants has provided a detailed description of the symbiosis with Rhizobium leguminosarum bv. viciae strains. We show here that two allelic non-nodulating pea mutants, RisNod4 and K24, are affected in the PsSym37 gene, encoding a LysM receptor kinase similar to Lotus japonicus NFR1 and Medicago truncatula LYK3. Phenotypic analysis of RisNod4 and K24 suggests a role for the SYM37 in regulation of infection-thread initiation and nodule development from cortical-cell division foci. We show that RisNod4 plants carrying an L to F substitution in the LysM1 domain display a restrictive symbiotic phenotype comparable to the PsSym2(A) lines that distinguish 'European' and 'Middle East' Rhizobium leguminosarum bv. viciae strains. RisNod4 mutants develop nodules only in the presence of a 'Middle East' Rhizobium strain producing O-acetylated Nod factors indicating the SYM37 involvement in Nod-factor recognition. Along with the PsSym37, a homologous LysM receptor kinase gene, PsK1, was isolated and characterized. We show that PsK1 and PsSym37 are genetically linked to each other and to the PsSym2 locus. Allelic complementation analyses and sequencing of the extracellular regions of PsSym37 and PsK1 in several 'European' and 'Afghan' pea cultivars point towards PsK1 as possible candidate for the elusive PsSym2 gene.
AB - Phenotypic characterization of pea symbiotic mutants has provided a detailed description of the symbiosis with Rhizobium leguminosarum bv. viciae strains. We show here that two allelic non-nodulating pea mutants, RisNod4 and K24, are affected in the PsSym37 gene, encoding a LysM receptor kinase similar to Lotus japonicus NFR1 and Medicago truncatula LYK3. Phenotypic analysis of RisNod4 and K24 suggests a role for the SYM37 in regulation of infection-thread initiation and nodule development from cortical-cell division foci. We show that RisNod4 plants carrying an L to F substitution in the LysM1 domain display a restrictive symbiotic phenotype comparable to the PsSym2(A) lines that distinguish 'European' and 'Middle East' Rhizobium leguminosarum bv. viciae strains. RisNod4 mutants develop nodules only in the presence of a 'Middle East' Rhizobium strain producing O-acetylated Nod factors indicating the SYM37 involvement in Nod-factor recognition. Along with the PsSym37, a homologous LysM receptor kinase gene, PsK1, was isolated and characterized. We show that PsK1 and PsSym37 are genetically linked to each other and to the PsSym2 locus. Allelic complementation analyses and sequencing of the extracellular regions of PsSym37 and PsK1 in several 'European' and 'Afghan' pea cultivars point towards PsK1 as possible candidate for the elusive PsSym2 gene.
U2 - 10.1094/MPMI-21-12-1600
DO - 10.1094/MPMI-21-12-1600
M3 - Journal article
C2 - 18986256
SN - 0894-0282
VL - 21
SP - 1600
EP - 1608
JO - Molecular plant-microbe interactions
JF - Molecular plant-microbe interactions
IS - 12
ER -