Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avis › Tidsskriftartikel › Forskning › peer review
Accepteret manuskript, 982 KB, PDF-dokument
Forlagets udgivne version
Let S be a semigroup, H a 2-torsion free, abelian group and C 2f the second order Cauchy difference of a function f: S→ H. Assuming that H is uniquely 2-divisible or S is generated by its squares we prove that the solutions f of C 2f= 0 are the functions of the form f(x) = j(x) + B(x, x) , where j is a solution of the symmetrized additive Cauchy equation and B is bi-additive. Under certain conditions we prove that the terms j and B are continuous, if f is. We relate the solutions f of C 2f= 0 to Fréchet’s functional equation and to polynomials of degree less than or equal to 2.
Originalsprog | Engelsk |
---|---|
Tidsskrift | Aequationes Mathematicae |
Vol/bind | 91 |
Nummer | 2 |
Sider (fra-til) | 279–288 |
Antal sider | 10 |
ISSN | 0001-9054 |
DOI | |
Status | Udgivet - 2017 |
Se relationer på Aarhus Universitet Citationsformater
ID: 107780410