Aarhus Universitets segl

The homogeneous geometries of real hyperbolic space

Publikation: Working paper/Preprint Working paperForskning

Dokumenter

  • Marco Castrillón López, Departamento de Geometría y Topología, Facultad de Matemáticas, Universidad Complutense de Madrid, Spanien
  • Pedro Martínez Gadea, Instituto de Fisica Fundamental, CSIC, Madrid, Spanien
  • Andrew Francis Swann
We describe the holonomy algebras of all canonical connections of homogeneous structures on real hyperbolic spaces in all dimensions. The structural results obtained then lead to a determination of the types, in the sense of Tricerri and Vanhecke, of the corresponding homogeneous tensors. We use our analysis to show that the moduli space of homogeneous structures on real hyperbolic space has two connected components.
OriginalsprogEngelsk
UdgiverDepartment of Mathematics, Aarhus University
Antal sider13
StatusUdgivet - 29 nov. 2011

Se relationer på Aarhus Universitet Citationsformater

Download-statistik

Ingen data tilgængelig

ID: 42097998