Aarhus University Seal / Aarhus Universitets segl

The hemodynamic and metabolic effects of spironolactone treatment in acute kidney injury assessed by hyperpolarized MRI

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

DOI

Renal ischemia-reperfusion injury (IRI) is one of the most common types of acute kidney injury. Spironolactone has shown promising kidney protective effects in renal IRI in rats. We investigated the hemodynamic and metabolic effects of spironolactone (100 mg/kg) administered immediately after 40 min unilateral kidney ischemia in rats. Hyperpolarized MRI using co-polarized [1-13 C]pyruvate and [13 C,15 N2 ]urea as well as 1 H dynamic contrast-enhanced (DCE) MRI was performed 24 h after induction of ischemia. We found a significant decrease in renal blood flow (RBF) in the ischemic kidney compared with the contralateral one measured using DCE and [13 C,15 N2 ]urea. The RBF measured using [1-13 C]pyruvate and [13 C,15 N2 ]urea was significantly altered by spironolactone. The RBFs in the ischemic kidney compared with the contralateral kidney were decreased similarly as measured using both [13 C,15 N2 ]urea and [1-13 C]pyruvate in the spironolactone-treated group. Spironolactone treatment increased the perfusion-corrected pyruvate metabolism by 54% in both the ischemic and contralateral kidney. Furthermore, we showed a correlation between vascular permeability using a histological Evans blue analysis and the ratio of the volumes of distribution (VoDs), ie VoD-[13 C,15 N2 ]urea/VoD-[1-13 C]pyruvate. This suggests that [13 C,15 N2 ]urea/[1-13 C]pyruvate VoD ratio may be a novel indicator of renal vascular permeability associated with renal damage in rodents.

OriginalsprogEngelsk
Artikelnummere4371
TidsskriftNMR in Biomedicine
Vol/bind33
Nummer10
Antal sider11
ISSN1099-1492
DOI
StatusUdgivet - okt. 2020

Bibliografisk note

© 2020 John Wiley & Sons, Ltd.

Se relationer på Aarhus Universitet Citationsformater

ID: 193803764