The Gaussian-linear hidden Markov model: A Python package

Diego Vidaurre*, Laura Masaracchia, Nick Y. Larsen, Lenno R.P.T. Ruijters, Sonsoles Alonso, Christine Ahrends, Mark W. Woolrich

*Corresponding author af dette arbejde

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

1 Citationer (Scopus)

Abstract

We propose the Gaussian-Linear Hidden Markov model (GLHMM), a generalisation of different types of HMMs commonly used in neuroscience. In short, the GLHMM is a general framework where linear regression is used to flexibly parameterise the Gaussian state distribution, thereby accommodating a wide range of uses—including unsupervised, encoding, and decoding models. GLHMM is available as a Python toolbox with an emphasis on statistical testing and out-of-sample prediction—that is, aimed at finding and characterising brain–behaviour associations. The toolbox uses a stochastic variational inference approach, enabling it to handle large data sets at reasonable computational time. The GLHMM can work with various types of data, including animal recordings or non-brain data, and is suitable for a broad range of experimental paradigms. For demonstration, we show examples with fMRI, local field potential, electrocorticography, magnetoencephalography, and pupillometry.

OriginalsprogEngelsk
Artikelnummerimag_a_00460
TidsskriftImaging Neuroscience
Vol/bind3
Antal sider16
ISSN2837-6056
DOI
StatusUdgivet - 3 feb. 2025

Fingeraftryk

Dyk ned i forskningsemnerne om 'The Gaussian-linear hidden Markov model: A Python package'. Sammen danner de et unikt fingeraftryk.

Citationsformater