Aarhus Universitets segl

The firn meltwater Retention Model Intercomparison Project (RetMIP): evaluation of nine firn models at four weather station sites on the Greenland ice sheet

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

DOI

  • B. Vandecrux, De Nationale Geologiske Undersøgelser for Danmark og Grønland, Danmarks Tekniske Universitet
  • ,
  • R. Mottram, Danmarks Meteorologiske Institut
  • ,
  • P. L. Langen
  • R. S. Fausto, De Nationale Geologiske Undersøgelser for Danmark og Grønland
  • ,
  • M. Olesen, Danish Meteorological Institute
  • ,
  • C. M. Stevens, University of Washington
  • ,
  • V. Verjans, Lancaster University
  • ,
  • A. Leeson, Lancaster University
  • ,
  • S. Ligtenberg, Utrecht University, Weather Impact
  • ,
  • P. Kuipers Munneke, Utrecht University
  • ,
  • S. Marchenko, Uppsala University
  • ,
  • W. van Pelt, Uppsala University
  • ,
  • C. R. Meyer, Dartmouth College
  • ,
  • S. B. Simonsen, Danmarks Tekniske Universitet
  • ,
  • A. Heilig, Ludwig Maximilian University of Munich
  • ,
  • S. Samimi, University of Calgary
  • ,
  • S. Marshall, University of Calgary
  • ,
  • H. Machguth, University of Fribourg
  • ,
  • M. MacFerrin, University of Colorado Denver
  • ,
  • M. Niwano, Japan Meteorological Agency
  • ,
  • O. Miller, US Geological Survey
  • ,
  • C. I. Voss, US Geological Survey
  • ,
  • J. E. Box, De Nationale Geologiske Undersøgelser for Danmark og Grønland

Perennial snow, or firn, covers 80% of the Greenland ice sheet and has the capacity to retain surface meltwater, influencing the ice sheet mass balance and contribution to sea-level rise. Multilayer firn models are traditionally used to simulate firn processes and estimate meltwater retention. We present, intercompare and evaluate outputs from nine firn models at four sites that represent the ice sheet's dry snow, percolation, ice slab and firn aquifer areas. The models are forced by mass and energy fluxes derived from automatic weather stations and compared to firn density, temperature and meltwater percolation depth observations. Models agree relatively well at the dry-snow site while elsewhere their meltwater infiltration schemes lead to marked differences in simulated firn characteristics. Models accounting for deep meltwater percolation overestimate percolation depth and firn temperature at the percolation and ice slab sites but accurately simulate recharge of the firn aquifer. Models using Darcy's law and bucket schemes compare favorably to observed firn temperature and meltwater percolation depth at the percolation site, but only the Darcy models accurately simulate firn temperature and percolation at the ice slab site. Despite good performance at certain locations, no single model currently simulates meltwater infiltration adequately at all sites. The model spread in estimated meltwater retention and runoff increases with increasing meltwater input. The highest runoff was calculated at the KAN_U site in 2012, when average total runoff across models (2) was 353610mmw.e. (water equivalent), about 2748% of the surface meltwater input. We identify potential causes for the model spread and the mismatch with observations and provide recommendations for future model development and firn investigation.

OriginalsprogEngelsk
TidsskriftThe Cryosphere
Vol/bind14
Nummer11
Sider (fra-til)3785-3810
Antal sider26
ISSN1994-0424
DOI
StatusUdgivet - nov. 2020

Se relationer på Aarhus Universitet Citationsformater

ID: 200596079