The equation f(xy)=f(x)h(y)+g(x)f(y) and representations on C2

Henrik Stetkær*

*Corresponding author af dette arbejde

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

1 Citationer (Scopus)

Abstract

Let G be a topological group, and let C(G) denote the algebra of continuous, complex valued functions on G. We find the solutions f,g,h∈C(G) of the Levi-Civita equation (Formula presented.) which is an extension of the sine addition law. Representations of G on C2 play an important role. As a corollary we get the solutions f,g∈C(G) of the sine subtraction law f(xy)=f(x)g(y)-g(x)f(y), x,y∈G, in which x↦x is a continuous involution, meaning that (xy)=yx and x∗∗=x for all x,y∈G.

OriginalsprogEngelsk
TidsskriftAequationes Mathematicae
Vol/bind98
Nummer5
Sider (fra-til)1419-1438
Antal sider20
ISSN0001-9054
DOI
StatusUdgivet - okt. 2024

Fingeraftryk

Dyk ned i forskningsemnerne om 'The equation f(xy)=f(x)h(y)+g(x)f(y) and representations on C2'. Sammen danner de et unikt fingeraftryk.

Citationsformater