TY - JOUR
T1 - The effect of editing clinical contours on deep-learning segmentation accuracy of the gross tumor volume in glioblastoma
AU - Hochreuter, Kim M.
AU - Ren, Jintao
AU - Nijkamp, Jasper
AU - Korreman, Stine S.
AU - Lukacova, Slávka
AU - Kallehauge, Jesper F.
AU - Trip, Anouk K.
PY - 2024/7
Y1 - 2024/7
N2 - Background and purpose: Deep-learning (DL) models for segmentation of the gross tumor volume (GTV) in radiotherapy are generally based on clinical delineations which suffer from inter-observer variability. The aim of this study was to compare performance of a DL-model based on clinical glioblastoma GTVs to a model based on a single-observer edited version of the same GTVs. Materials and methods: The dataset included imaging data (Computed Tomography (CT), T1, contrast-T1 (T1C), and fluid-attenuated-inversion-recovery (FLAIR)) of 259 glioblastoma patients treated with post-operative radiotherapy between 2012 and 2019 at a single institute. The clinical GTVs were edited using all imaging data. The dataset was split into 207 cases for training/validation and 52 for testing. GTV segmentation models (nnUNet) were trained on clinical and edited GTVs separately and compared using Surface Dice with 1 mm tolerance (sDSC1mm). We also evaluated model performance with respect to extent of resection (EOR), and different imaging combinations (T1C/T1/FLAIR/CT, T1C/FLAIR/CT, T1C/FLAIR, T1C/CT, T1C/T1, T1C). A Wilcoxon test was used for significance testing. Results: The median (range) sDSC1mm of the clinical-GTV-model and edited-GTV-model both evaluated with the edited contours, was 0.76 (0.43–0.94) vs. 0.92 (0.60–0.98) respectively (p < 0.001). sDSC1mm was not significantly different between patients with a biopsy, partial, and complete resection. T1C as single input performed as good as use of imaging combinations. Conclusions: High segmentation accuracy was obtained by the DL-models. Editing of the clinical GTVs significantly increased DL performance with a relevant effect size. DL performance was robust for EOR and highly accurate using only T1C.
AB - Background and purpose: Deep-learning (DL) models for segmentation of the gross tumor volume (GTV) in radiotherapy are generally based on clinical delineations which suffer from inter-observer variability. The aim of this study was to compare performance of a DL-model based on clinical glioblastoma GTVs to a model based on a single-observer edited version of the same GTVs. Materials and methods: The dataset included imaging data (Computed Tomography (CT), T1, contrast-T1 (T1C), and fluid-attenuated-inversion-recovery (FLAIR)) of 259 glioblastoma patients treated with post-operative radiotherapy between 2012 and 2019 at a single institute. The clinical GTVs were edited using all imaging data. The dataset was split into 207 cases for training/validation and 52 for testing. GTV segmentation models (nnUNet) were trained on clinical and edited GTVs separately and compared using Surface Dice with 1 mm tolerance (sDSC1mm). We also evaluated model performance with respect to extent of resection (EOR), and different imaging combinations (T1C/T1/FLAIR/CT, T1C/FLAIR/CT, T1C/FLAIR, T1C/CT, T1C/T1, T1C). A Wilcoxon test was used for significance testing. Results: The median (range) sDSC1mm of the clinical-GTV-model and edited-GTV-model both evaluated with the edited contours, was 0.76 (0.43–0.94) vs. 0.92 (0.60–0.98) respectively (p < 0.001). sDSC1mm was not significantly different between patients with a biopsy, partial, and complete resection. T1C as single input performed as good as use of imaging combinations. Conclusions: High segmentation accuracy was obtained by the DL-models. Editing of the clinical GTVs significantly increased DL performance with a relevant effect size. DL performance was robust for EOR and highly accurate using only T1C.
KW - Deep learning
KW - Editing labels
KW - Glioblastoma
KW - GTV
KW - Radiotherapy
UR - http://www.scopus.com/inward/record.url?scp=85200807383&partnerID=8YFLogxK
U2 - 10.1016/j.phro.2024.100620
DO - 10.1016/j.phro.2024.100620
M3 - Journal article
C2 - 39220114
AN - SCOPUS:85200807383
SN - 2405-6316
VL - 31
JO - Physics and Imaging in Radiation Oncology
JF - Physics and Imaging in Radiation Oncology
M1 - 100620
ER -