The DIRAC code for relativistic molecular calculations

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

DOI

  • Trond Saue, Universite Toulouse III - Paul Sabatier
  • ,
  • Radovan Bast, UiT The Arctic University of Norway
  • ,
  • André Severo Pereira Gomes, Université de Lille
  • ,
  • Hans Jørgen Aa Jensen, University of Southern Denmark
  • ,
  • Lucas Visscher, Vrije Universiteit Amsterdam
  • ,
  • Ignacio Agustín Aucar, Universidad Nacional del Nordeste
  • ,
  • Roberto Di Remigio, UiT The Arctic University of Norway
  • ,
  • Kenneth G. Dyall, Dirac Solutions
  • ,
  • Ephraim Eliav, Tel Aviv University
  • ,
  • Elke Fasshauer
  • ,
  • Timo Fleig, Universite Toulouse III - Paul Sabatier
  • ,
  • Loïc Halbert, Université de Lille
  • ,
  • Erik Donovan Hedegård, Lund University
  • ,
  • Benjamin Helmich-Paris, Max Planck Institute for Coal Research
  • ,
  • Miroslav Iliaš, Matej Bel University
  • ,
  • Christoph R. Jacob, Technical University of Braunschweig
  • ,
  • Stefan Knecht, ETH, Zurich
  • ,
  • Jon K. Laerdahl, University of Oslo
  • ,
  • Marta L. Vidal, Technical University of Denmark
  • ,
  • Malaya K. Nayak, Bhabha Atomic Research Centre
  • ,
  • Małgorzata Olejniczak, University of Warsaw
  • ,
  • Jógvan Magnus Haugaard Olsen
  • Markus Pernpointner, Kybeidos GmbH
  • ,
  • Bruno Senjean, Vrije Universiteit Amsterdam, Universiteit Leiden
  • ,
  • Avijit Shee, University of Michigan, Ann Arbor
  • ,
  • Ayaki Sunaga, Tokyo Metropolitan University
  • ,
  • Joost N.P. van Stralen, Vrije Universiteit Amsterdam

DIRAC is a freely distributed general-purpose program system for one-, two-, and four-component relativistic molecular calculations at the level of Hartree-Fock, Kohn-Sham (including range-separated theory), multiconfigurational self-consistent-field, multireference configuration interaction, electron propagator, and various flavors of coupled cluster theory. At the self-consistent-field level, a highly original scheme, based on quaternion algebra, is implemented for the treatment of both spatial and time reversal symmetry. DIRAC features a very general module for the calculation of molecular properties that to a large extent may be defined by the user and further analyzed through a powerful visualization module. It allows for the inclusion of environmental effects through three different classes of increasingly sophisticated embedding approaches: the implicit solvation polarizable continuum model, the explicit polarizable embedding model, and the frozen density embedding model.

OriginalsprogEngelsk
Artikelnummer204104
TidsskriftThe Journal of Chemical Physics
Vol/bind152
Nummer20
Antal sider17
ISSN0021-9606
DOI
StatusUdgivet - maj 2020

Se relationer på Aarhus Universitet Citationsformater

ID: 190060028