The computational complexity of trembling hand perfection and other equilibrium refinements

    Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisKonferenceartikelForskningpeer review

    Abstract

    The king of refinements of Nash equilibrium is trembling hand perfection. We show that it is NP-hard and Sqrt-Sum-hard to decide if a given pure strategy Nash equilibrium of a given three-player game in strategic form with integer payoffs is trembling hand perfect. Analogous results are shown for a number of other solution concepts, including proper equilibrium, (the strategy part of) sequential equilibrium, quasi-perfect equilibrium and CURB.
    The proofs all use a reduction from the problem of comparing the minmax value of a three-player game in strategic form to a given rational number. This problem was previously shown to be NP-hard by Borgs et al., while a Sqrt-Sum hardness result is given in this paper. The latter proof yields bounds on the algebraic degree of the minmax value of a three-player game that may be of independent interest.
    OriginalsprogEngelsk
    BogserieLecture Notes in Computer Science
    Vol/bind6386
    Sider (fra-til)198-209
    Antal sider12
    ISSN0302-9743
    DOI
    StatusUdgivet - 2010
    BegivenhedAlgorithmic Game Theory, Third International Symposium - Athen, Grækenland
    Varighed: 18 okt. 201020 okt. 2010
    Konferencens nummer: 3

    Konference

    KonferenceAlgorithmic Game Theory, Third International Symposium
    Nummer3
    Land/OmrådeGrækenland
    ByAthen
    Periode18/10/201020/10/2010

    Fingeraftryk

    Dyk ned i forskningsemnerne om 'The computational complexity of trembling hand perfection and other equilibrium refinements'. Sammen danner de et unikt fingeraftryk.

    Citationsformater