The benefits of bagging for forecast models of realized volatility

Eric Hillebrand*, Marcelo C. Medeiros

*Corresponding author af dette arbejde

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

65 Citationer (Scopus)

Abstract

This article shows that bagging can improve the forecast accuracy of time series models for realized volatility. We consider 23 stocks from the Dow Jones Industrial Average over the sample period 1995 to 2005 and employ two different forecast models, a log-linear specification in the spirit of the heterogeneous autoregressive model and a nonlinear specification with logistic transitions. Both forecast model types benefit from bagging, in particular in the 1990s part of our sample. The log-linear specification shows larger improvements than the nonlinear model. Bagging the log-linear model yields the highest forecast accuracy on our sample.

OriginalsprogEngelsk
TidsskriftEconometric Reviews
Vol/bind29
Nummer5
Sider (fra-til)571-593
Antal sider23
ISSN0747-4938
DOI
StatusUdgivet - 2010

Fingeraftryk

Dyk ned i forskningsemnerne om 'The benefits of bagging for forecast models of realized volatility'. Sammen danner de et unikt fingeraftryk.

Citationsformater