Abstract
Asteroseismology of bright stars has become increasingly important as a method to determine the fundamental properties (in particular ages) of stars. The Kepler Space Telescope initiated a revolution by detecting oscillations in more than 500 main-sequence and subgiant stars. However, most Kepler stars are faint and therefore have limited constraints from independent methods such as long-baseline interferometry. Here we present the discovery of solar-like oscillations in α Men A, a naked-eye (V = 5.1) G7 dwarf in TESS's southern continuous viewing zone. Using a combination of astrometry, spectroscopy, and asteroseismology, we precisely characterize the solar analog α Men A (T eff = 5569 62 K, R ∗ = 0.960 0.016 R o˙, M ∗ = 0.964 0.045 M o˙). To characterize the fully convective M dwarf companion, we derive empirical relations to estimate mass, radius, and temperature given the absolute Gaia magnitude and metallicity, yielding M ∗ = 0.169 0.006 M o˙, R ∗ = 0.19 0.01 R o˙, and T eff = 3054 44 K. Our asteroseismic age of 6.2 1.4 (stat) 0.6 (sys) Gyr for the primary places α Men B within a small population of M dwarfs with precisely measured ages. We combined multiple ground-based spectroscopy surveys to reveal an activity cycle of P = 13.1 1.1 yr for α Men A, a period similar to that observed in the Sun. We used different gyrochronology models with the asteroseismic age to estimate a rotation period of ∼30 days for the primary. Alpha Men A is now the closest (d = 10 pc) solar analog with a precise asteroseismic age from space-based photometry, making it a prime target for next-generation direct-imaging missions searching for true Earth analogs.
Originalsprog | Engelsk |
---|---|
Artikelnummer | 229 |
Tidsskrift | Astrophysical Journal |
Vol/bind | 922 |
Nummer | 2 |
ISSN | 0004-637X |
DOI | |
Status | Udgivet - dec. 2021 |