Symmetry breaking operators for strongly spherical reductive pairs

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

140 Downloads (Pure)

Abstract

A real reductive pair (G, H) is called strongly spherical if the homogeneous space (G × H)/ diag(H) is real spherical. This geometric condition is equivalent to the representa-tion-theoretic property that dim Hom H(π| H, τ) < ∞ for all smooth admissible representations π of G and τ of H. In this paper we explicitly construct for all strongly spherical pairs (G, H) intertwining operators in Hom H(π| H, τ) for π and τ spherical principal series representations of G and H. These so-called symmetry breaking operators depend holomorphically on the induction parameters and we further show that they generically span the space Hom H(π| H, τ). In the special case of multiplicity one pairs we extend our construction to vector-valued principal series representations and obtain generic formulas for the multiplicities between arbitrary principal series. As an application, we prove an early version of the Gross–Prasad conjecture for complex orthogonal groups, and also provide lower bounds for the dimension of the space of Shintani functions.

OriginalsprogEngelsk
TidsskriftPublications of the Research Institute for Mathematical Sciences
Vol/bind59
Nummer2
Sider (fra-til)259-337
Antal sider79
ISSN0034-5318
DOI
StatusUdgivet - 11 okt. 2023

Fingeraftryk

Dyk ned i forskningsemnerne om 'Symmetry breaking operators for strongly spherical reductive pairs'. Sammen danner de et unikt fingeraftryk.
  • Symmetry Breaking in Mathematics

    Frahm, J. (PI), Weiske, C. (Deltager), Ditlevsen, J. (Deltager), Spilioti, P. (Deltager), Bang-Jensen, F. J. (Deltager) & Labriet, Q. (Deltager)

    01/08/201931/07/2024

    Projekter: ProjektForskning

Citationsformater